伪广义可逆算子的摄动

IF 0.5 Q3 MATHEMATICS
Asma Lahmar, Haïkel Skhiri
{"title":"伪广义可逆算子的摄动","authors":"Asma Lahmar,&nbsp;Haïkel Skhiri","doi":"10.1007/s44146-023-00068-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a continuation of previous works Lahmar (Filomat 36:2551-2572, 2022), Lahmar (Filomat 36: 4575–4590, 2022), Lahmar (Preprint) where we defined a new class of operators called pseudo-generalized invertible operators that includes both the set of generalized invertible operators and the set of Drazin invertible operators. Here we focus essentially on the perturbation problem of pseudo-generalized invertible operators and the particular case of DPG invertibility.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"389 - 411"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the perturbation of pseudo-generalized invertible operators\",\"authors\":\"Asma Lahmar,&nbsp;Haïkel Skhiri\",\"doi\":\"10.1007/s44146-023-00068-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is a continuation of previous works Lahmar (Filomat 36:2551-2572, 2022), Lahmar (Filomat 36: 4575–4590, 2022), Lahmar (Preprint) where we defined a new class of operators called pseudo-generalized invertible operators that includes both the set of generalized invertible operators and the set of Drazin invertible operators. Here we focus essentially on the perturbation problem of pseudo-generalized invertible operators and the particular case of DPG invertibility.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"89 3-4\",\"pages\":\"389 - 411\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00068-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00068-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文是前人研究成果Lahmar (Filomat 36:2551-2572, 2022), Lahmar (Filomat 36: 4575-4590, 2022), Lahmar (Preprint)的延续,其中定义了一类新的算子,称为伪广义可逆算子,它既包括广义可逆算子集,也包括Drazin可逆算子集。本文主要讨论伪广义可逆算子的微扰问题和DPG可逆性的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the perturbation of pseudo-generalized invertible operators

This paper is a continuation of previous works Lahmar (Filomat 36:2551-2572, 2022), Lahmar (Filomat 36: 4575–4590, 2022), Lahmar (Preprint) where we defined a new class of operators called pseudo-generalized invertible operators that includes both the set of generalized invertible operators and the set of Drazin invertible operators. Here we focus essentially on the perturbation problem of pseudo-generalized invertible operators and the particular case of DPG invertibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信