多项式的某些bernstein型$$L_p$$ L p不等式

IF 0.5 Q3 MATHEMATICS
N. A. Rather, Aijaz Bhat, Suhail Gulzar
{"title":"多项式的某些bernstein型$$L_p$$ L p不等式","authors":"N. A. Rather,&nbsp;Aijaz Bhat,&nbsp;Suhail Gulzar","doi":"10.1007/s44146-023-00074-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>P</i>(<i>z</i>) be a polynomial of degree <i>n</i>, then it is known that for <span>\\(\\alpha \\in {\\mathbb {C}}\\)</span> with <span>\\(|\\alpha |\\le \\frac{n}{2},\\)</span></p><div><div><span>$$\\begin{aligned} \\underset{|z|=1}{\\max }|\\left| zP^{\\prime }(z)-\\alpha P(z)\\right| \\le \\left| n-\\alpha \\right| \\underset{|z|=1}{\\max }|P(z)|. \\end{aligned}$$</span></div></div><p>This inequality includes Bernstein’s inequality, concerning the estimate for <span>\\(|P^\\prime (z)|\\)</span> over <span>\\(|z|\\le 1,\\)</span> as a special case. In this paper, we extend this inequality to <span>\\(L_p\\)</span> norm which among other things shows that the condition on <span>\\(\\alpha \\)</span> can be relaxed. We also prove similar inequalities for polynomials with restricted zeros.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"545 - 557"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Certain Bernstein-type \\\\(L_p\\\\) inequalities for polynomials\",\"authors\":\"N. A. Rather,&nbsp;Aijaz Bhat,&nbsp;Suhail Gulzar\",\"doi\":\"10.1007/s44146-023-00074-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>P</i>(<i>z</i>) be a polynomial of degree <i>n</i>, then it is known that for <span>\\\\(\\\\alpha \\\\in {\\\\mathbb {C}}\\\\)</span> with <span>\\\\(|\\\\alpha |\\\\le \\\\frac{n}{2},\\\\)</span></p><div><div><span>$$\\\\begin{aligned} \\\\underset{|z|=1}{\\\\max }|\\\\left| zP^{\\\\prime }(z)-\\\\alpha P(z)\\\\right| \\\\le \\\\left| n-\\\\alpha \\\\right| \\\\underset{|z|=1}{\\\\max }|P(z)|. \\\\end{aligned}$$</span></div></div><p>This inequality includes Bernstein’s inequality, concerning the estimate for <span>\\\\(|P^\\\\prime (z)|\\\\)</span> over <span>\\\\(|z|\\\\le 1,\\\\)</span> as a special case. In this paper, we extend this inequality to <span>\\\\(L_p\\\\)</span> norm which among other things shows that the condition on <span>\\\\(\\\\alpha \\\\)</span> can be relaxed. We also prove similar inequalities for polynomials with restricted zeros.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"89 3-4\",\"pages\":\"545 - 557\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00074-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00074-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设P(z)为n次多项式,则已知对于\(\alpha \in {\mathbb {C}}\)和\(|\alpha |\le \frac{n}{2},\)$$\begin{aligned} \underset{|z|=1}{\max }|\left| zP^{\prime }(z)-\alpha P(z)\right| \le \left| n-\alpha \right| \underset{|z|=1}{\max }|P(z)|. \end{aligned}$$,该不等式包含Bernstein不等式,将\(|P^\prime (z)|\) / \(|z|\le 1,\)的估计作为特例。本文将此不等式推广到\(L_p\)范数,证明\(\alpha \)上的条件可以放宽。我们也证明了具有限制零的多项式的类似不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certain Bernstein-type \(L_p\) inequalities for polynomials

Let P(z) be a polynomial of degree n, then it is known that for \(\alpha \in {\mathbb {C}}\) with \(|\alpha |\le \frac{n}{2},\)

$$\begin{aligned} \underset{|z|=1}{\max }|\left| zP^{\prime }(z)-\alpha P(z)\right| \le \left| n-\alpha \right| \underset{|z|=1}{\max }|P(z)|. \end{aligned}$$

This inequality includes Bernstein’s inequality, concerning the estimate for \(|P^\prime (z)|\) over \(|z|\le 1,\) as a special case. In this paper, we extend this inequality to \(L_p\) norm which among other things shows that the condition on \(\alpha \) can be relaxed. We also prove similar inequalities for polynomials with restricted zeros.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信