Certain Bernstein-type \(L_p\) inequalities for polynomials

IF 0.5 Q3 MATHEMATICS
N. A. Rather, Aijaz Bhat, Suhail Gulzar
{"title":"Certain Bernstein-type \\(L_p\\) inequalities for polynomials","authors":"N. A. Rather,&nbsp;Aijaz Bhat,&nbsp;Suhail Gulzar","doi":"10.1007/s44146-023-00074-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>P</i>(<i>z</i>) be a polynomial of degree <i>n</i>, then it is known that for <span>\\(\\alpha \\in {\\mathbb {C}}\\)</span> with <span>\\(|\\alpha |\\le \\frac{n}{2},\\)</span></p><div><div><span>$$\\begin{aligned} \\underset{|z|=1}{\\max }|\\left| zP^{\\prime }(z)-\\alpha P(z)\\right| \\le \\left| n-\\alpha \\right| \\underset{|z|=1}{\\max }|P(z)|. \\end{aligned}$$</span></div></div><p>This inequality includes Bernstein’s inequality, concerning the estimate for <span>\\(|P^\\prime (z)|\\)</span> over <span>\\(|z|\\le 1,\\)</span> as a special case. In this paper, we extend this inequality to <span>\\(L_p\\)</span> norm which among other things shows that the condition on <span>\\(\\alpha \\)</span> can be relaxed. We also prove similar inequalities for polynomials with restricted zeros.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"545 - 557"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00074-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let P(z) be a polynomial of degree n, then it is known that for \(\alpha \in {\mathbb {C}}\) with \(|\alpha |\le \frac{n}{2},\)

$$\begin{aligned} \underset{|z|=1}{\max }|\left| zP^{\prime }(z)-\alpha P(z)\right| \le \left| n-\alpha \right| \underset{|z|=1}{\max }|P(z)|. \end{aligned}$$

This inequality includes Bernstein’s inequality, concerning the estimate for \(|P^\prime (z)|\) over \(|z|\le 1,\) as a special case. In this paper, we extend this inequality to \(L_p\) norm which among other things shows that the condition on \(\alpha \) can be relaxed. We also prove similar inequalities for polynomials with restricted zeros.

多项式的某些bernstein型$$L_p$$ L p不等式
设P(z)为n次多项式,则已知对于\(\alpha \in {\mathbb {C}}\)和\(|\alpha |\le \frac{n}{2},\)$$\begin{aligned} \underset{|z|=1}{\max }|\left| zP^{\prime }(z)-\alpha P(z)\right| \le \left| n-\alpha \right| \underset{|z|=1}{\max }|P(z)|. \end{aligned}$$,该不等式包含Bernstein不等式,将\(|P^\prime (z)|\) / \(|z|\le 1,\)的估计作为特例。本文将此不等式推广到\(L_p\)范数,证明\(\alpha \)上的条件可以放宽。我们也证明了具有限制零的多项式的类似不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信