Some best approximation theorems and best proximity point theorems

IF 0.5 Q3 MATHEMATICS
S. Sadiq Basha
{"title":"Some best approximation theorems and best proximity point theorems","authors":"S. Sadiq Basha","doi":"10.1007/s44146-023-00065-y","DOIUrl":null,"url":null,"abstract":"<div><p>A best approximation theorem for almost cyclic contractions has been proved in the recent article (Sadiq Basha in J. Fixed Point Theory Appl 23:32, 2021). The purpose of this note is to show that, with the same hypotheses as in the preceding best approximation theorem, the conclusion of the theorem can be strengthened to produce a best proximity point rather than a best approximation and hence a best proximity point theorem for almost cyclic contractions in the framework of a uniformly convex Banach space. Further, it is interesting to observe that such a best proximity point theorem for almost cyclic contractions generalizes/subsumes the well known best proximity point theorem, due to Eldred and Veeramani (J Math Anal Appl 323:1001–1006, 2006), for cyclic contractions in the framework of a uniformly convex Banach space. On the other hand, these best approximation theorems and best proximity point theorems for some types of contractions do not generalize the most elegant Banach’s contraction principle because of the underlying richer framework of a uniformly convex Banach space rather than a simpler framework like a complete metric space. Therefore, the purpose of this note is to bring forth the framework of utmost complete space and establish a best proximity point theorem for almost cyclic contractions in such a simpler framework, thereby generalizing the contraction principle.\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"215 - 226"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00065-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00065-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A best approximation theorem for almost cyclic contractions has been proved in the recent article (Sadiq Basha in J. Fixed Point Theory Appl 23:32, 2021). The purpose of this note is to show that, with the same hypotheses as in the preceding best approximation theorem, the conclusion of the theorem can be strengthened to produce a best proximity point rather than a best approximation and hence a best proximity point theorem for almost cyclic contractions in the framework of a uniformly convex Banach space. Further, it is interesting to observe that such a best proximity point theorem for almost cyclic contractions generalizes/subsumes the well known best proximity point theorem, due to Eldred and Veeramani (J Math Anal Appl 323:1001–1006, 2006), for cyclic contractions in the framework of a uniformly convex Banach space. On the other hand, these best approximation theorems and best proximity point theorems for some types of contractions do not generalize the most elegant Banach’s contraction principle because of the underlying richer framework of a uniformly convex Banach space rather than a simpler framework like a complete metric space. Therefore, the purpose of this note is to bring forth the framework of utmost complete space and establish a best proximity point theorem for almost cyclic contractions in such a simpler framework, thereby generalizing the contraction principle.

一些最佳逼近定理和最佳邻近点定理
在最近的文章中已经证明了几乎循环收缩的最佳逼近定理(Sadiq Basha在J.Fixed Point Theory Appl 23:321021中)。本文的目的是证明,在与前面的最佳逼近定理相同的假设下,定理的结论可以得到加强,以产生最佳逼近点,而不是最佳逼近,从而在一致凸Banach空间的框架下产生几乎循环收缩的最佳逼近点定理。此外,有趣的是,观察到这样一个几乎循环收缩的最佳邻近点定理推广/包含了Eldred和Veeramani(J Math Anal Appl 323:1001–10062006)在一致凸Banach空间框架下的循环收缩的已知最佳邻近点理论。另一方面,对于某些类型的收缩,这些最佳逼近定理和最佳邻近点定理并没有推广最优雅的Banach收缩原理,因为一致凸Banach空间的底层框架更丰富,而不是像完整度量空间这样的更简单的框架。因此,本文的目的是提出最完备空间的框架,并在这样一个更简单的框架中建立几乎循环收缩的最佳邻近点定理,从而推广收缩原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信