{"title":"Generative optimization of bistable plates with deep learning","authors":"Hong Li, Qingfeng Wang","doi":"10.1016/j.taml.2023.100483","DOIUrl":"https://doi.org/10.1016/j.taml.2023.100483","url":null,"abstract":"<div><p>Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices. Most bistable curved plates are characterized by a constant thickness profile. Regrettably, due to the inherent complexity of this problem, relatively little attention has been devoted to this area. In this study, we demonstrate how deep learning can facilitate the discovery of novel plate profiles that cater to multiple objectives, including maximizing stiffness, forward snapping force, and backward snapping force. Our proposed approach is distinguished by its efficiency in terms of low computational energy consumption and high effectiveness. It holds promise for future applications in the design and optimization of multistable structures with diverse objectives, addressing the requirements of various fields.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"14 1","pages":"Article 100483"},"PeriodicalIF":3.4,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000545/pdfft?md5=39d4d8735e9e88727c8be23fdd5bfb70&pid=1-s2.0-S2095034923000545-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138549350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shizheng Wen , Michael W. Lee , Kai M. Kruger Bastos , Ian K. Eldridge-Allegra , Earl H. Dowell
{"title":"Feature identification in complex fluid flows by convolutional neural networks","authors":"Shizheng Wen , Michael W. Lee , Kai M. Kruger Bastos , Ian K. Eldridge-Allegra , Earl H. Dowell","doi":"10.1016/j.taml.2023.100482","DOIUrl":"10.1016/j.taml.2023.100482","url":null,"abstract":"<div><p>Recent advancements have established machine learning’s utility in predicting nonlinear fluid dynamics, with predictive accuracy being a central motivation for employing neural networks. However, the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics. In this paper, a single-layer convolutional neural network (CNN) was trained to recognize three qualitatively different subsonic buffet flows (periodic, quasi-periodic and chaotic) over a high-incidence airfoil, and a near-perfect accuracy was obtained with only a small training dataset. The convolutional kernels and corresponding feature maps, developed by the model with no temporal information provided, identified large-scale coherent structures in agreement with those known to be associated with buffet flows. Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored. The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100482"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000533/pdfft?md5=0751e990d15598c516321ddf159bf672&pid=1-s2.0-S2095034923000533-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reinforcement learning for wind-farm flow control: Current state and future actions","authors":"Mahdi Abkar , Navid Zehtabiyan-Rezaie , Alexandros Iosifidis","doi":"10.1016/j.taml.2023.100475","DOIUrl":"https://doi.org/10.1016/j.taml.2023.100475","url":null,"abstract":"<div><p>Wind-farm flow control stands at the forefront of grand challenges in wind-energy science. The central issue is that current algorithms are based on simplified models and, thus, fall short of capturing the complex physics of wind farms associated with the high-dimensional nature of turbulence and multiscale wind-farm-atmosphere interactions. Reinforcement learning (RL), as a subset of machine learning, has demonstrated its effectiveness in solving high-dimensional problems in various domains, and the studies performed in the last decade prove that it can be exploited in the development of the next generation of algorithms for wind-farm flow control. This review has two main objectives. Firstly, it aims to provide an up-to-date overview of works focusing on the development of wind-farm flow control schemes utilizing RL methods. By examining the latest research in this area, the review seeks to offer a comprehensive understanding of the advancements made in wind-farm flow control through the application of RL techniques. Secondly, it aims to shed light on the obstacles that researchers face when implementing wind-farm flow control based on RL. By highlighting these challenges, the review aims to identify areas requiring further exploration and potential opportunities for future research.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100475"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000466/pdfft?md5=dccf754ba92cf45e1307aa03bb92f0b4&pid=1-s2.0-S2095034923000466-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91977641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weijun Zhu, Yunan Wu, Zhenye Sun, Wenzhong Shen, Guangxing Guo, Jianwei Lin
{"title":"A method of convolutional neural network based on frequency segmentation for monitoring the state of wind turbine blades","authors":"Weijun Zhu, Yunan Wu, Zhenye Sun, Wenzhong Shen, Guangxing Guo, Jianwei Lin","doi":"10.1016/j.taml.2023.100479","DOIUrl":"10.1016/j.taml.2023.100479","url":null,"abstract":"<div><p>Wind turbine blades are prone to failure due to high tip speed, rain, dust and so on. A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed. On the experimental measurement data, variational mode decomposition filtering and Mel spectrogram drawing are conducted first. The Mel spectrogram is divided into two halves based on frequency characteristics and then sent into the convolutional neural network. Gaussian white noise is superimposed on the original signal and the output results are assessed based on score coefficients, considering the complexity of the real environment. The surfaces of Wind turbine blades are classified into four types: standard, attachments, polishing, and serrated trailing edge. The proposed method is evaluated and the detection accuracy in complicated background conditions is found to be 99.59%. In addition to support the differentiation of trained models, utilizing proper score coefficients also permit the screening of unknown types.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100479"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000508/pdfft?md5=49f235d2825c62d403a3e3aa9917f8b2&pid=1-s2.0-S2095034923000508-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning potential for Ab Initio phase transitions of zirconia","authors":"Yuanpeng Deng, Chong Wang, Xiang Xu, Hui Li","doi":"10.1016/j.taml.2023.100481","DOIUrl":"10.1016/j.taml.2023.100481","url":null,"abstract":"<div><p>Zirconia has been extensively used in aerospace, military, biomedical and industrial fields due to its unusual combination of high mechanical, electrical and thermal properties. However, the fundamental and critical phase transition process of zirconia has not been well studied because of its difficult first-order phase transition with formidable energy barrier. Here, we generated a machine learning interatomic potential with <em>ab initio</em> accuracy to discover the mechanism behind all kinds of phase transition of zirconia at ambient pressure. The machine learning potential precisely characterized atomic interactions among all zirconia allotropes and liquid zirconia in a wide temperature range. We realized the challenging reversible first-order monoclinic-tetragonal and cubic-liquid phase transition processes with enhanced sampling techniques. From the thermodynamic information, we gave a better understanding of the thermal hysteresis phenomenon in martensitic monoclinic-tetragonal transition. The phase diagram of zirconia from our machine learning potential based molecular dynamics simulations corresponded well with experimental results.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100481"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000521/pdfft?md5=f70ba7ea49139490effb6fe082db679a&pid=1-s2.0-S2095034923000521-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huifeng Chen , Mingbo Sun , Dapeng Xiong , Yixin Yang , Taiyu Wang , Hongbo Wang
{"title":"Large eddy simulation of supersonic flow in ducts with complex cross-sections","authors":"Huifeng Chen , Mingbo Sun , Dapeng Xiong , Yixin Yang , Taiyu Wang , Hongbo Wang","doi":"10.1016/j.taml.2023.100469","DOIUrl":"10.1016/j.taml.2023.100469","url":null,"abstract":"<div><p>Large Eddy Simulation (LES) has been employed for the investigation of supersonic flow characteristics in five ducts with varying cross-sectional geometries. The numerical results reveal that flow channel configurations exert a considerable influence on the mainstream flow and the near-wall flow behavior. In contrast to straight ducts, square-to-circular and rectangular-to-circular ducts exhibit thicker boundary layers and a greater presence of vortex structures. Given the same inlet area, rectangular-to-circular ducts lead to higher flow drag force and total pressure loss than square-to-circular ducts. Characterized by the substantial flow separation and shock waves, the “S-shaped duct shows significant vertically-asymmetric characteristics.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100469"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45305543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation and simulation of parabolic trough collector with the presence of hybrid nanofluid in the finned receiver tube","authors":"M. Javidan, M. Gorji-Bandpy, A. Al-Araji","doi":"10.1016/j.taml.2023.100465","DOIUrl":"https://doi.org/10.1016/j.taml.2023.100465","url":null,"abstract":"<div><p>The present study discusses the thermal performance of the receiver tube, which contains a wall with various fin shapes in the parabolic trough collector. Inserted fins and bulge surfaces of the inner wall of the receiver tube increase the turbulent fluid flow. In pursuance of uniform distribution of heat transfer, various fin shapes such as square-shape, circle-shape, triangle-shape, and combined square-circle shapes were inserted, examined, and compared. A study of the temperature differences and fluid flow is meaningful for this project therefore Finite Volume Method was used to investigate heat transfer. Also, hybrid Nano-Fluid AL<sub>2</sub>O<sub>3</sub><sub><img></sub>CuO, TiO<sub>2</sub><sub><img></sub>Cu, and Ag-MgO were applied to increase thermal diffusivity. When the combined square-circle-shaped fin was inserted, the thermal peak of fluid flow in the receiver tube was lower than the other studied fin shapes by almost 1%. Besides, the hybrid nano-fluid Ag-MgO Syltherm-oil-800 has lower thermal waste in comparison to others by more than 3%.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100465"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000363/pdfft?md5=e868955c17fce6480c1e1f4efe44f709&pid=1-s2.0-S2095034923000363-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91998792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João Pedro Norenberg , Americo Cunha Jr , Piotr Wolszczak , Grzegorz Litak
{"title":"Piezomagnetic vibration energy harvester with an amplifier","authors":"João Pedro Norenberg , Americo Cunha Jr , Piotr Wolszczak , Grzegorz Litak","doi":"10.1016/j.taml.2023.100478","DOIUrl":"10.1016/j.taml.2023.100478","url":null,"abstract":"<div><p>We study the effect of an amplification mechanism in a nonlinear vibration energy harvesting system where a ferromagnetic beam resonator is attached to the vibration source through an additional linear spring with a damper. The beam moves in the nonlinear double-well potential caused by interaction with two magnets. The piezoelectric patches with electrodes attached to the electrical circuit support mechanical energy transduction into electrical power. The results show that the additional spring can improve energy harvesting. By changing its stiffness, we observed various solutions. At the point of the optimal stiffness of the additional spring, the power output is amplified a few times depending on the excitation amplitude.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100478"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000491/pdfft?md5=d02a716d533829089c95a2ba24d74aaa&pid=1-s2.0-S2095034923000491-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning of partial differential equations from noise data","authors":"Wenbo Cao, Weiwei Zhang","doi":"10.1016/j.taml.2023.100480","DOIUrl":"10.1016/j.taml.2023.100480","url":null,"abstract":"<div><p>Machine learning of partial differential equations from data is a potential breakthrough to solve the lack of physical equations in complex dynamic systems, and sparse regression is an attractive approach recently emerged. Noise is the biggest challenge for sparse regression to identify equations because sparse regression relies on local derivative evaluation of noisy data. This study proposes a simple and general approach which greatly improves the noise robustness by projecting the evaluated time derivative and partial differential term into a subspace with less noise. This approach allows accurate reconstruction of PDEs (partial differential equations) involving high-order derivatives from data with a considerable amount of noise. In addition, we discuss and compare the effects of the proposed method based on Fourier subspace and POD (proper orthogonal decomposition) subspace, and the latter usually have better results since it preserves the maximum amount of information.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100480"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209503492300051X/pdfft?md5=95da60b3e33c8264541ac9a88e0a5ae6&pid=1-s2.0-S209503492300051X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning-based stiffness optimization of digital composite metamaterials with desired positive or negative Poisson's ratio","authors":"Xihang Jiang , Fan Liu , Lifeng Wang","doi":"10.1016/j.taml.2023.100485","DOIUrl":"https://doi.org/10.1016/j.taml.2023.100485","url":null,"abstract":"<div><p>Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures. However, these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures. In this work, a convolutional neural network (CNN) based self-learning multi-objective optimization is performed to design digital composite materials. The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials, along with their corresponding Poisson's ratios and stiffness values. Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint. Furthermore, we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio (negative, zero, or positive). The optimized designs have been successfully and efficiently obtained, and their validity has been confirmed through finite element analysis results. This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100485"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000569/pdfft?md5=e44a11e91a49d1f7deb1f2355047b815&pid=1-s2.0-S2095034923000569-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138549473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}