Reinforcement learning for wind-farm flow control: Current state and future actions

IF 3.2 3区 工程技术 Q2 MECHANICS
Mahdi Abkar , Navid Zehtabiyan-Rezaie , Alexandros Iosifidis
{"title":"Reinforcement learning for wind-farm flow control: Current state and future actions","authors":"Mahdi Abkar ,&nbsp;Navid Zehtabiyan-Rezaie ,&nbsp;Alexandros Iosifidis","doi":"10.1016/j.taml.2023.100475","DOIUrl":null,"url":null,"abstract":"<div><p>Wind-farm flow control stands at the forefront of grand challenges in wind-energy science. The central issue is that current algorithms are based on simplified models and, thus, fall short of capturing the complex physics of wind farms associated with the high-dimensional nature of turbulence and multiscale wind-farm-atmosphere interactions. Reinforcement learning (RL), as a subset of machine learning, has demonstrated its effectiveness in solving high-dimensional problems in various domains, and the studies performed in the last decade prove that it can be exploited in the development of the next generation of algorithms for wind-farm flow control. This review has two main objectives. Firstly, it aims to provide an up-to-date overview of works focusing on the development of wind-farm flow control schemes utilizing RL methods. By examining the latest research in this area, the review seeks to offer a comprehensive understanding of the advancements made in wind-farm flow control through the application of RL techniques. Secondly, it aims to shed light on the obstacles that researchers face when implementing wind-farm flow control based on RL. By highlighting these challenges, the review aims to identify areas requiring further exploration and potential opportunities for future research.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100475"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000466/pdfft?md5=dccf754ba92cf45e1307aa03bb92f0b4&pid=1-s2.0-S2095034923000466-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000466","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Wind-farm flow control stands at the forefront of grand challenges in wind-energy science. The central issue is that current algorithms are based on simplified models and, thus, fall short of capturing the complex physics of wind farms associated with the high-dimensional nature of turbulence and multiscale wind-farm-atmosphere interactions. Reinforcement learning (RL), as a subset of machine learning, has demonstrated its effectiveness in solving high-dimensional problems in various domains, and the studies performed in the last decade prove that it can be exploited in the development of the next generation of algorithms for wind-farm flow control. This review has two main objectives. Firstly, it aims to provide an up-to-date overview of works focusing on the development of wind-farm flow control schemes utilizing RL methods. By examining the latest research in this area, the review seeks to offer a comprehensive understanding of the advancements made in wind-farm flow control through the application of RL techniques. Secondly, it aims to shed light on the obstacles that researchers face when implementing wind-farm flow control based on RL. By highlighting these challenges, the review aims to identify areas requiring further exploration and potential opportunities for future research.

Abstract Image

风电场流量控制的强化学习:当前状态和未来行为
风电场的流量控制是风能科学面临的最大挑战。核心问题是,目前的算法是基于简化的模型,因此,无法捕捉到与高维湍流性质和多尺度风电场与大气相互作用相关的风电场的复杂物理。强化学习(RL)作为机器学习的一个子集,在解决各个领域的高维问题方面已经证明了它的有效性,并且在过去十年中进行的研究证明它可以用于开发下一代风电场流量控制算法。这次审查有两个主要目标。首先,它旨在提供最新的工作概述,重点是利用RL方法开发风电场流量控制方案。通过研究这一领域的最新研究,本文旨在通过RL技术的应用,对风电场流量控制的进展提供一个全面的了解。其次,它旨在揭示研究人员在实施基于RL的风电场流量控制时面临的障碍。通过强调这些挑战,本综述旨在确定需要进一步探索的领域和未来研究的潜在机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信