{"title":"风电场流量控制的强化学习:当前状态和未来行为","authors":"Mahdi Abkar , Navid Zehtabiyan-Rezaie , Alexandros Iosifidis","doi":"10.1016/j.taml.2023.100475","DOIUrl":null,"url":null,"abstract":"<div><p>Wind-farm flow control stands at the forefront of grand challenges in wind-energy science. The central issue is that current algorithms are based on simplified models and, thus, fall short of capturing the complex physics of wind farms associated with the high-dimensional nature of turbulence and multiscale wind-farm-atmosphere interactions. Reinforcement learning (RL), as a subset of machine learning, has demonstrated its effectiveness in solving high-dimensional problems in various domains, and the studies performed in the last decade prove that it can be exploited in the development of the next generation of algorithms for wind-farm flow control. This review has two main objectives. Firstly, it aims to provide an up-to-date overview of works focusing on the development of wind-farm flow control schemes utilizing RL methods. By examining the latest research in this area, the review seeks to offer a comprehensive understanding of the advancements made in wind-farm flow control through the application of RL techniques. Secondly, it aims to shed light on the obstacles that researchers face when implementing wind-farm flow control based on RL. By highlighting these challenges, the review aims to identify areas requiring further exploration and potential opportunities for future research.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000466/pdfft?md5=dccf754ba92cf45e1307aa03bb92f0b4&pid=1-s2.0-S2095034923000466-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning for wind-farm flow control: Current state and future actions\",\"authors\":\"Mahdi Abkar , Navid Zehtabiyan-Rezaie , Alexandros Iosifidis\",\"doi\":\"10.1016/j.taml.2023.100475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wind-farm flow control stands at the forefront of grand challenges in wind-energy science. The central issue is that current algorithms are based on simplified models and, thus, fall short of capturing the complex physics of wind farms associated with the high-dimensional nature of turbulence and multiscale wind-farm-atmosphere interactions. Reinforcement learning (RL), as a subset of machine learning, has demonstrated its effectiveness in solving high-dimensional problems in various domains, and the studies performed in the last decade prove that it can be exploited in the development of the next generation of algorithms for wind-farm flow control. This review has two main objectives. Firstly, it aims to provide an up-to-date overview of works focusing on the development of wind-farm flow control schemes utilizing RL methods. By examining the latest research in this area, the review seeks to offer a comprehensive understanding of the advancements made in wind-farm flow control through the application of RL techniques. Secondly, it aims to shed light on the obstacles that researchers face when implementing wind-farm flow control based on RL. By highlighting these challenges, the review aims to identify areas requiring further exploration and potential opportunities for future research.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000466/pdfft?md5=dccf754ba92cf45e1307aa03bb92f0b4&pid=1-s2.0-S2095034923000466-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000466\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000466","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Reinforcement learning for wind-farm flow control: Current state and future actions
Wind-farm flow control stands at the forefront of grand challenges in wind-energy science. The central issue is that current algorithms are based on simplified models and, thus, fall short of capturing the complex physics of wind farms associated with the high-dimensional nature of turbulence and multiscale wind-farm-atmosphere interactions. Reinforcement learning (RL), as a subset of machine learning, has demonstrated its effectiveness in solving high-dimensional problems in various domains, and the studies performed in the last decade prove that it can be exploited in the development of the next generation of algorithms for wind-farm flow control. This review has two main objectives. Firstly, it aims to provide an up-to-date overview of works focusing on the development of wind-farm flow control schemes utilizing RL methods. By examining the latest research in this area, the review seeks to offer a comprehensive understanding of the advancements made in wind-farm flow control through the application of RL techniques. Secondly, it aims to shed light on the obstacles that researchers face when implementing wind-farm flow control based on RL. By highlighting these challenges, the review aims to identify areas requiring further exploration and potential opportunities for future research.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).