Feature identification in complex fluid flows by convolutional neural networks

IF 3.2 3区 工程技术 Q2 MECHANICS
Shizheng Wen , Michael W. Lee , Kai M. Kruger Bastos , Ian K. Eldridge-Allegra , Earl H. Dowell
{"title":"Feature identification in complex fluid flows by convolutional neural networks","authors":"Shizheng Wen ,&nbsp;Michael W. Lee ,&nbsp;Kai M. Kruger Bastos ,&nbsp;Ian K. Eldridge-Allegra ,&nbsp;Earl H. Dowell","doi":"10.1016/j.taml.2023.100482","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements have established machine learning’s utility in predicting nonlinear fluid dynamics, with predictive accuracy being a central motivation for employing neural networks. However, the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics. In this paper, a single-layer convolutional neural network (CNN) was trained to recognize three qualitatively different subsonic buffet flows (periodic, quasi-periodic and chaotic) over a high-incidence airfoil, and a near-perfect accuracy was obtained with only a small training dataset. The convolutional kernels and corresponding feature maps, developed by the model with no temporal information provided, identified large-scale coherent structures in agreement with those known to be associated with buffet flows. Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored. The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"13 6","pages":"Article 100482"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000533/pdfft?md5=0751e990d15598c516321ddf159bf672&pid=1-s2.0-S2095034923000533-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000533","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements have established machine learning’s utility in predicting nonlinear fluid dynamics, with predictive accuracy being a central motivation for employing neural networks. However, the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics. In this paper, a single-layer convolutional neural network (CNN) was trained to recognize three qualitatively different subsonic buffet flows (periodic, quasi-periodic and chaotic) over a high-incidence airfoil, and a near-perfect accuracy was obtained with only a small training dataset. The convolutional kernels and corresponding feature maps, developed by the model with no temporal information provided, identified large-scale coherent structures in agreement with those known to be associated with buffet flows. Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored. The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.

Abstract Image

基于卷积神经网络的复杂流体流动特征识别
最近的进展已经确立了机器学习在预测非线性流体动力学方面的实用性,预测精度是采用神经网络的核心动机。然而,网络功能的核心模式识别对于增强我们对复杂流体动力学的动态洞察力同样有价值。本文对单层卷积神经网络(CNN)进行了训练,以识别高入射翼型上三种不同性质的亚音速冲击流(周期、准周期和混沌),并且仅使用较小的训练数据集就获得了近乎完美的精度。该模型开发的卷积核和相应的特征图在没有提供时间信息的情况下,识别出了与已知与自助餐流相关的大规模连贯结构。对包括网络结构和卷积核大小在内的超参数的敏感性也进行了探讨。这些模型确定的相干结构增强了我们对大雷诺数范围内高入射翼型亚音速冲击的动力学理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信