Shizheng Wen , Michael W. Lee , Kai M. Kruger Bastos , Ian K. Eldridge-Allegra , Earl H. Dowell
{"title":"Feature identification in complex fluid flows by convolutional neural networks","authors":"Shizheng Wen , Michael W. Lee , Kai M. Kruger Bastos , Ian K. Eldridge-Allegra , Earl H. Dowell","doi":"10.1016/j.taml.2023.100482","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements have established machine learning’s utility in predicting nonlinear fluid dynamics, with predictive accuracy being a central motivation for employing neural networks. However, the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics. In this paper, a single-layer convolutional neural network (CNN) was trained to recognize three qualitatively different subsonic buffet flows (periodic, quasi-periodic and chaotic) over a high-incidence airfoil, and a near-perfect accuracy was obtained with only a small training dataset. The convolutional kernels and corresponding feature maps, developed by the model with no temporal information provided, identified large-scale coherent structures in agreement with those known to be associated with buffet flows. Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored. The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000533/pdfft?md5=0751e990d15598c516321ddf159bf672&pid=1-s2.0-S2095034923000533-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000533","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements have established machine learning’s utility in predicting nonlinear fluid dynamics, with predictive accuracy being a central motivation for employing neural networks. However, the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics. In this paper, a single-layer convolutional neural network (CNN) was trained to recognize three qualitatively different subsonic buffet flows (periodic, quasi-periodic and chaotic) over a high-incidence airfoil, and a near-perfect accuracy was obtained with only a small training dataset. The convolutional kernels and corresponding feature maps, developed by the model with no temporal information provided, identified large-scale coherent structures in agreement with those known to be associated with buffet flows. Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored. The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).