{"title":"从噪声数据中对偏微分方程进行机器学习","authors":"Wenbo Cao, Weiwei Zhang","doi":"10.1016/j.taml.2023.100480","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning of partial differential equations from data is a potential breakthrough to solve the lack of physical equations in complex dynamic systems, and sparse regression is an attractive approach recently emerged. Noise is the biggest challenge for sparse regression to identify equations because sparse regression relies on local derivative evaluation of noisy data. This study proposes a simple and general approach which greatly improves the noise robustness by projecting the evaluated time derivative and partial differential term into a subspace with less noise. This approach allows accurate reconstruction of PDEs (partial differential equations) involving high-order derivatives from data with a considerable amount of noise. In addition, we discuss and compare the effects of the proposed method based on Fourier subspace and POD (proper orthogonal decomposition) subspace, and the latter usually have better results since it preserves the maximum amount of information.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209503492300051X/pdfft?md5=95da60b3e33c8264541ac9a88e0a5ae6&pid=1-s2.0-S209503492300051X-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Machine learning of partial differential equations from noise data\",\"authors\":\"Wenbo Cao, Weiwei Zhang\",\"doi\":\"10.1016/j.taml.2023.100480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning of partial differential equations from data is a potential breakthrough to solve the lack of physical equations in complex dynamic systems, and sparse regression is an attractive approach recently emerged. Noise is the biggest challenge for sparse regression to identify equations because sparse regression relies on local derivative evaluation of noisy data. This study proposes a simple and general approach which greatly improves the noise robustness by projecting the evaluated time derivative and partial differential term into a subspace with less noise. This approach allows accurate reconstruction of PDEs (partial differential equations) involving high-order derivatives from data with a considerable amount of noise. In addition, we discuss and compare the effects of the proposed method based on Fourier subspace and POD (proper orthogonal decomposition) subspace, and the latter usually have better results since it preserves the maximum amount of information.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209503492300051X/pdfft?md5=95da60b3e33c8264541ac9a88e0a5ae6&pid=1-s2.0-S209503492300051X-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209503492300051X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209503492300051X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Machine learning of partial differential equations from noise data
Machine learning of partial differential equations from data is a potential breakthrough to solve the lack of physical equations in complex dynamic systems, and sparse regression is an attractive approach recently emerged. Noise is the biggest challenge for sparse regression to identify equations because sparse regression relies on local derivative evaluation of noisy data. This study proposes a simple and general approach which greatly improves the noise robustness by projecting the evaluated time derivative and partial differential term into a subspace with less noise. This approach allows accurate reconstruction of PDEs (partial differential equations) involving high-order derivatives from data with a considerable amount of noise. In addition, we discuss and compare the effects of the proposed method based on Fourier subspace and POD (proper orthogonal decomposition) subspace, and the latter usually have better results since it preserves the maximum amount of information.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).