Emerging Topics in Life Sciences最新文献

筛选
英文 中文
Implications of plastic pollution on global marine carbon cycling and climate. 塑料污染对全球海洋碳循环和气候的影响。
IF 3.8
Emerging Topics in Life Sciences Pub Date : 2022-12-01 DOI: 10.1042/ETLS20220013
Karin Kvale
{"title":"Implications of plastic pollution on global marine carbon cycling and climate.","authors":"Karin Kvale","doi":"10.1042/ETLS20220013","DOIUrl":"https://doi.org/10.1042/ETLS20220013","url":null,"abstract":"<p><p>Plastic pollution can both chemically and physically impede marine biota. But it can also provide novel substrates for colonization, and its leachate might stimulate phytoplankton growth. Plastic contains carbon, which is released into the environment upon breakdown. All of these mechanisms have been proposed to contribute global impacts on open ocean carbon cycling and climate from ubiquitous plastic pollution. Laboratory studies produce compelling data showing both stimulation and inhibition of primary producers and disruption of predatory lifecycles at individual scale, but global carbon cycle impacts remain mostly unquantified. Preliminary modelling estimates ecosystem alterations and direct carbon release due to plastic pollution will remain vastly less disruptive to global carbon cycling than the direct damage wrought by fossil fuel carbon emissions. But when considered by mass, carbon in the form of bulky, persistent plastic particles may be disproportionally more influential on biogeochemical cycling than carbon as a gas in the atmosphere or as a dissolved component of seawater. Thus, future research should pay particular attention to the optical and other physical effects of marine plastic pollution on Earth system and ecological function, and resulting impacts on oxygen and nutrient cycling. Improved understanding of the breakdown of plastics in the marine environment should also be considered high-priority, as any potential perturbation of biological carbon cycling by plastic pollution is climate-relevant on centennial timescales and longer.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10446305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
The ecological impact of plastic pollution in a changing climate. 塑料污染在气候变化中的生态影响。
IF 3.8
Emerging Topics in Life Sciences Pub Date : 2022-12-01 DOI: 10.1042/ETLS20220016
Gawsia Wahidunnessa Chowdhury, Heather J Koldewey, Md Nazmul Hasan Niloy, Subrata Sarker
{"title":"The ecological impact of plastic pollution in a changing climate.","authors":"Gawsia Wahidunnessa Chowdhury,&nbsp;Heather J Koldewey,&nbsp;Md Nazmul Hasan Niloy,&nbsp;Subrata Sarker","doi":"10.1042/ETLS20220016","DOIUrl":"https://doi.org/10.1042/ETLS20220016","url":null,"abstract":"<p><p>Assessing three interlinked issues, plastic pollution, climate change and biodiversity loss separately can overlook potential interactions that may lead to positive or negative impacts on global ecosystem processes. Recent studies suggest that threatened species and ecosystems are vulnerable to both plastic pollution and climate change stressors. Here we consider the connectivity and state of knowledge between these three environmental issues with a focus on the Global South. Nine out of top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries are located within the Global South, yet research is focused in the Global North. A literature search for the top ten Long-Term Climate Risk Index (CRI) (2000-2019) ranked countries matched a total of 2416 (3.3% of global publications) search results on climate change, with 56 (4% of the global publications) on plastic pollution, and seven (7.7% of the global publications) on both climate change and plastic pollution. There is a strong correlation between the Global South and high biodiversity hotspots, high food insecurity and low environmental performance. Using Bangladesh as a case study, we show the erosion rates and sea level rise scenarios that will increase ocean-bound plastic pollution and impact high biodiversity areas. Poverty alleviation and promoting renewable energy and green practices can significantly reduce the stress on the environment. We recommend that these connected planetary threats can be best addressed through a holistic and collaborative approach to research, a focus on the Global South, and an ambitious policy agenda.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10446825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Plastic pollution of four understudied marine ecosystems: a review of mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. 四种研究不足的海洋生态系统的塑料污染:红树林、海草草甸、北冰洋和深海海底综述。
IF 3.4
Emerging Topics in Life Sciences Pub Date : 2022-12-01 DOI: 10.1042/ETLS20220017
Bruno Andreas Walther, Melanie Bergmann
{"title":"Plastic pollution of four understudied marine ecosystems: a review of mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor.","authors":"Bruno Andreas Walther, Melanie Bergmann","doi":"10.1042/ETLS20220017","DOIUrl":"10.1042/ETLS20220017","url":null,"abstract":"<p><p>Plastic pollution is now a worldwide phenomenon affecting all marine ecosystems, but some ecosystems and regions remain understudied. Here, we review the presence and impacts of macroplastics and microplastics for four such ecosystems: mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. Plastic production has grown steadily, and thus the impact on species and ecosystems has increased, too. The accumulated evidence also indicates that plastic pollution is an additional and increasing stressor to these already ecosystems and many of the species living in them. However, laboratory or field studies, which provide strong correlational or experimental evidence of ecological harm due to plastic pollution remain scarce or absent for these ecosystems. Based on these findings, we give some research recommendations for the future.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10504435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring protein symmetry at the RCSB Protein Data Bank. 在RCSB蛋白质数据库中探索蛋白质对称性。
IF 3.8
Emerging Topics in Life Sciences Pub Date : 2022-09-09 DOI: 10.1042/ETLS20210267
Jose M Duarte, Shuchismita Dutta, David S Goodsell, Stephen K Burley
{"title":"Exploring protein symmetry at the RCSB Protein Data Bank.","authors":"Jose M Duarte,&nbsp;Shuchismita Dutta,&nbsp;David S Goodsell,&nbsp;Stephen K Burley","doi":"10.1042/ETLS20210267","DOIUrl":"https://doi.org/10.1042/ETLS20210267","url":null,"abstract":"<p><p>The symmetry of biological molecules has fascinated structural biologists ever since the structure of hemoglobin was determined. The Protein Data Bank (PDB) archive is the central global archive of three-dimensional (3D), atomic-level structures of biomolecules, providing open access to the results of structural biology research with no limitations on usage. Roughly 40% of the structures in the archive exhibit some type of symmetry, including formal global symmetry, local symmetry, or pseudosymmetry. The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (founding member of the Worldwide Protein Data Bank partnership that jointly manages, curates, and disseminates the archive) provides a variety of tools to assist users interested in exploring the symmetry of biological macromolecules. These tools include multiple modalities for searching and browsing the archive, turnkey methods for biomolecular visualization, documentation, and outreach materials for exploring functional biomolecular symmetry.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9472815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40594834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Floral symmetry: the geometry of plant reproduction. 花对称:植物繁殖的几何学。
IF 3.8
Emerging Topics in Life Sciences Pub Date : 2022-09-09 DOI: 10.1042/ETLS20210270
Yuxiang Jiang, Laila Moubayidin
{"title":"Floral symmetry: the geometry of plant reproduction.","authors":"Yuxiang Jiang,&nbsp;Laila Moubayidin","doi":"10.1042/ETLS20210270","DOIUrl":"https://doi.org/10.1042/ETLS20210270","url":null,"abstract":"<p><p>The flower is an astonishing innovation that arose during plant evolution allowing flowering plants - also known as angiosperms - to dominate life on earth in a relatively short period of geological time. Flowers are formed from secondary meristems by co-ordinated differentiation of flower organs, such as sepals, petals, stamens, and carpels. The position, number and morphology of these flower organs impose a geometrical pattern - or symmetry type - within the flower which is a trait tightly connected to successful reproduction. During evolution, flower symmetry switched from the ancestral poly-symmetric (radial symmetry) to the mono-symmetric (bilateral symmetry) type multiple times, including numerous reversals, with these events linked to co-evolution with pollinators and reproductive strategies. In this review, we introduce the diversity of flower symmetry, trace its evolution in angiosperms, and highlight the conserved genetic basis underpinning symmetry control in flowers. Finally, we discuss the importance of building upon the concept of flower symmetry by looking at the mechanisms orchestrating symmetry within individual flower organs and summarise the current scenario on symmetry patterning of the female reproductive organ, the gynoecium, the ultimate flower structure presiding over fertilisation and seed production.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9472818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40434275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Developmental instability, fluctuating asymmetry, and human psychological science. 发展不稳定、波动不对称和人类心理科学。
IF 3.8
Emerging Topics in Life Sciences Pub Date : 2022-09-09 DOI: 10.1042/ETLS20220025
Steven W Gangestad
{"title":"Developmental instability, fluctuating asymmetry, and human psychological science.","authors":"Steven W Gangestad","doi":"10.1042/ETLS20220025","DOIUrl":"https://doi.org/10.1042/ETLS20220025","url":null,"abstract":"Developmental instability (DI) is an individual's inability to produce a specific developmental outcome under a given set of conditions, generally thought to result from random perturbations experienced during development. Fluctuating asymmetry (FA) - asymmetry on bilateral features that, on average, are symmetrical (or asymmetry deviating from that arising from design) - has been used to measure DI. Dating to half a century ago, and accelerating in the past three decades, psychological researchers have examined associations between FA (typically measured on bodily or facial features) and a host of outcomes of interest, including psychological disorders, cognitive ability, attractiveness, and sexual behavior. A decade ago, a meta-analysis on findings from nearly 100 studies extracted several conclusions. On average, small but statistically reliable associations between FA and traits of interest exist. Though modest, these associations are expected to greatly underestimate the strength of associations with underlying DI. Despite the massive sample size across studies, we still lack a good handle on which traits are most strongly affected by DI. A major methodological implication of the meta-analysis is that most studies have been, individually, woefully underpowered to detect associations. Though offering some intriguing findings, much research is the past decade too has been underpowered; hence, the newer literature is also likely noisy. Several large-scale studies are exceptions. Future progress depends on additional large-scale studies and researchers' sensitivity to power issues. As well, theoretical assumptions and conceptualizations of DI and FA driving psychological research may need revision to explain empirical patterns.","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40718100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Anthropometric fluctuating asymmetries in living humans through the eyes of an anthropologist. 通过人类学家的视角观察活人的波动不对称。
IF 3.8
Emerging Topics in Life Sciences Pub Date : 2022-09-09 DOI: 10.1042/ETLS20210276
Barış Özener
{"title":"Anthropometric fluctuating asymmetries in living humans through the eyes of an anthropologist.","authors":"Barış Özener","doi":"10.1042/ETLS20210276","DOIUrl":"https://doi.org/10.1042/ETLS20210276","url":null,"abstract":"<p><p>There are many environmental and genetic factors that disrupt the stable structure of development in organisms. Although the strength of these vary, they leave certain signs in the body structure. Fluctuating asymmetry is a widely used population-level index of developmental instability, developmental noise, and robustness. Many bilateral traits are used in fluctuating asymmetry studies in humans. These traits include dermatoglyphics, limb lengths and widths, bilateral facial characters, and teeth. In this review, I evaluate the measurement methods of many bilateral anthropometric characters, taken from the bodies of living individuals with classical digital calipers.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40685480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fluctuating asymmetry as an indicator of stress. 波动不对称作为压力的指示。
IF 3.8
Emerging Topics in Life Sciences Pub Date : 2022-09-09 DOI: 10.1042/ETLS20210274
Vladimir M Zakharov, Ilya E Trofimov
{"title":"Fluctuating asymmetry as an indicator of stress.","authors":"Vladimir M Zakharov,&nbsp;Ilya E Trofimov","doi":"10.1042/ETLS20210274","DOIUrl":"https://doi.org/10.1042/ETLS20210274","url":null,"abstract":"<p><p>Fluctuating asymmetry as a special kind of asymmetry can be defined as deviations from a known predetermined ratio of the parts of morphological structure under study. As a special type of phenotypic variability fluctuating asymmetry is a manifestation of ontogenetic noise or developmental variability. This type of variability is ubiquitous and plays a significant role in the observed phenotypic diversity. The level of fluctuating asymmetry turns out to be an indicator of optimal developmental conditions and genetic coadaptation. It is also considered as a parameter of fitness. Thus, fluctuating asymmetry acts as a measure of developmental stability in developmental biology and as a measure of population condition in population biology.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40471894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Shape asymmetry - what's new? 形状不对称——有什么新鲜事吗?
IF 3.8
Emerging Topics in Life Sciences Pub Date : 2022-09-09 DOI: 10.1042/ETLS20210273
Christian Peter Klingenberg
{"title":"Shape asymmetry - what's new?","authors":"Christian Peter Klingenberg","doi":"10.1042/ETLS20210273","DOIUrl":"https://doi.org/10.1042/ETLS20210273","url":null,"abstract":"<p><p>Studies of shape asymmetry have become increasingly abundant as the methods of geometric morphometrics have gained widespread use. Most of these studies have focussed on fluctuating asymmetry and have largely obtained similar results as more traditional analyses of asymmetry in distance measurements, but several notable differences have also emerged. A key difference is that shape analyses provide information on the patterns, not just the amount of variation, and therefore tend to be more sensitive. Such analyses have shown that apparently symmetric structures in animals consistently show directional asymmetry for shape, but not for size. Furthermore, the long-standing prediction that phenotypic plasticity in response to environmental heterogeneity can contribute to fluctuating asymmetry has been confirmed for the first time for the shape of flower parts (but not for size). Finally, shape analyses in structures with complex symmetry, such as many flowers, can distinguish multiple types of directional asymmetry, generated by distinct direction-giving factors, which combine to the single component observable in bilaterally symmetric structures. While analyses of shape asymmetry are broadly compatible with traditional analyses of asymmetry, they incorporate more detailed morphological information, particularly for structures with complex symmetry, and therefore can reveal subtle biological effects that would otherwise not be apparent. This makes them a promising tool for a wide range of studies in the basic and applied life sciences.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40404149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Introduction to the special issue on symmetry in the life sciences - symmetry and asymmetry across biological scales. 生命科学中的对称性--跨生物尺度的对称性和不对称性特刊简介。
IF 3.8
Emerging Topics in Life Sciences Pub Date : 2022-09-08 DOI: 10.1042/ETLS20210265
John H Graham
{"title":"Introduction to the special issue on symmetry in the life sciences - symmetry and asymmetry across biological scales.","authors":"John H Graham","doi":"10.1042/ETLS20210265","DOIUrl":"10.1042/ETLS20210265","url":null,"abstract":"<p><p>In this special issue of Emerging Topics in Life Sciences, we present a series of mini-reviews of some of the most exciting research involving the concept of symmetry. This research spans the biological sciences from proteins to ecosystems. The reviews examine protein and floral symmetry, primate brain and behavioral asymmetries, geometric morphometrics, and various fluctuating asymmetries.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33449473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信