Angela L Linderholm, Manohar P Bhandari, Eva Borras, Allison Kwon, Flore M Herve, Mitchell M McCartney, Richart W Harper, Nicholas J Kenyon, Cristina E Davis
{"title":"Bioreactor contamination monitoring using off-gassed volatile organic compounds (VOCs).","authors":"Angela L Linderholm, Manohar P Bhandari, Eva Borras, Allison Kwon, Flore M Herve, Mitchell M McCartney, Richart W Harper, Nicholas J Kenyon, Cristina E Davis","doi":"10.1007/s00216-024-05720-z","DOIUrl":"https://doi.org/10.1007/s00216-024-05720-z","url":null,"abstract":"<p><p>Metabolically active cells emit volatile organic compounds (VOCs) that can be used in real time to non-invasively monitor the health of cell cultures. We utilized these naturally occurring VOCs in an adapted culture method to detect differences in culturing Chinese hamster ovary (CHO) cells with and without Staphylococcus epidermidis and Aspergillus fumigatus contaminations. The VOC emissions from the cell cultures were extracted and measured from the culture flask headspace using polydimethylsiloxane (PDMS)-coated Twisters, which were subjected to thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. In our initial time points of 1 and 2 h, we detected VOC signatures that differentiated the cultures earlier than traditional plating techniques or visualization methods. Partial least squares-discriminant analysis (PLS-DA) models were built to differentiate the analytes from the CHO cells and S. epidermidis- and A. fumigatus-inoculated CHO cultures. A total of 41 compounds with a variable importance in projection (VIP) score greater than 1 was obtained across the models. Similarly, based on the PLS regression analyses to predict the cell concentration of S. epidermidis (R<sup>2</sup> = 0.891) and A. fumigatus (R<sup>2</sup> = 0.375), 15 and 20 relevant compounds were putatively identified, respectively; two known compounds overlapped between the two microbes. Some of the compounds were unidentified and future studies will determine the relationship between the VOCs and the metabolic changes in contaminated cultures.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anika Retzmann, Kerri A Miller, Fwziah Ali Abdalali Mohamed, Michael E Wieser
{"title":"Reliable and precise Zn isotopic analysis of biological matrices using a fully automated dual-column purification procedure.","authors":"Anika Retzmann, Kerri A Miller, Fwziah Ali Abdalali Mohamed, Michael E Wieser","doi":"10.1007/s00216-024-05702-1","DOIUrl":"https://doi.org/10.1007/s00216-024-05702-1","url":null,"abstract":"<p><p>A fully automated dual-column purification procedure for Zn from biological samples, designed for subsequent Zn isotopic analysis, is presented that utilizes the prepFAST MC™ system (Elemental Scientific), DGA resin (TrisKem International), and TK201 resin (TrisKem International). The procedure developed enables the unattended processing of 20 samples per day and is characterized by low and reproduceable blanks (< 1.5 ng), no carry-over or memory effect, high reusability (> 50 times), high Zn yields 100.1% ± 5.3% (2 SD, N = 22), and strong robustness to matrix variations across biological samples (bone, liver, hair, blood). Additionally, Zn isotopic analysis using MC-ICP-MS showed no significant on-column fractionation. The measured δ<sup>66</sup>Zn/<sup>64</sup>Zn<sub>IRMM</sub> values for NIST SRM 1400 (0.67‰ ± 0.07‰, U, k = 2), NIST SRM 1486 (0.91‰ ± 0.06‰, U, k = 2), NIST SRM 1577c (- 0.45‰ ± 0.05‰, U, k = 2), ERM-DB001 (- 0.35‰ ± 0.05‰, U, k = 2), GBW09101 (- 0.32‰ ± 0.08‰, U, k = 2), and SeroNorm whole blood L-3 (-0.15 ‰ ± 0.05 ‰, U, k = 2) are consistent with published values. The procedure developed makes Zn, an analytically challenging isotope system, more accessible, feasible, and reliable for a broader range of users while enabling high sample throughput.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siqi Cui, Kun Wang, Yuanzhan Yang, Xuefei Lv, Xiaoqiong Li
{"title":"An integrated and paper-based microfluidic system employing LAMP-CRISPR and equipped with a portable device for simultaneous detection of pathogens.","authors":"Siqi Cui, Kun Wang, Yuanzhan Yang, Xuefei Lv, Xiaoqiong Li","doi":"10.1007/s00216-024-05693-z","DOIUrl":"https://doi.org/10.1007/s00216-024-05693-z","url":null,"abstract":"<p><p>Point-of-care testing methods are essential for the large-scale diagnosis and monitoring of bacterial infections. This study introduces an integrated platform designed for the simultaneous detection of pathogenic bacteria. Users can simply inject samples into the system, which then conducts the entire procedure in a fully automated manner, eliminating the need for external power sources, all within 60 min or less. The innovative paper-based microfluidic system is capable of lysing bacteria and integrating loop-mediated isothermal amplification (LAMP) with the CRISPR/Cas12a system, achieving this with minimal reagent usage on a single piece of paper. The reaction reagents are pre-fabricated as freeze-dried powder on the paper, allowing for long-term storage. A portable and cost-effective detection device has been designed to provide stable temperature control and analyze fluorescent signals, complementing the paper-based microfluidic system. This compact device measures 150 × 150 × 100 mm, weighs less than 1.8 kg, has an average power consumption of under 15 W, and supports external power supply. The device utilizes non-contact QR codes for information transmission, ensuring functionality even in areas without Internet connectivity. This platform is capable of simultaneously detecting five typical pathogenic microorganisms, with a detection limit of 1 copy/μL. It boasts several advantages, including miniaturization, lightweight design, low power consumption, portability, affordability, rapid detection, and ease of operation, making it highly suitable for on-site detection.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lia Olivares-Caro, Daniela Nova-Baza, Felipe Sanhueza, Hector Contreras, Barbara Alarcón, Pedro Alarcon-Zapata, Daniela Mennickent, Daniel Duran, Luis Bustamante, Andy J Perez, Daniel Enos, Carola Vergara, Claudia Mardones
{"title":"Targeted and untargeted cross-sectional study for sex-specific identification of plasma biomarkers of COVID-19 severity.","authors":"Lia Olivares-Caro, Daniela Nova-Baza, Felipe Sanhueza, Hector Contreras, Barbara Alarcón, Pedro Alarcon-Zapata, Daniela Mennickent, Daniel Duran, Luis Bustamante, Andy J Perez, Daniel Enos, Carola Vergara, Claudia Mardones","doi":"10.1007/s00216-024-05706-x","DOIUrl":"https://doi.org/10.1007/s00216-024-05706-x","url":null,"abstract":"<p><p>Coronavirus disease 2019 is a highly contagious respiratory illness caused by the coronavirus SARS-CoV-2. Symptoms can range from mild to severe and typically appear 2-14 days after virus exposure. While vaccination has significantly reduced the incidence of severe complications, strategies for the identification of new biomarkers to assess disease severity remains a critical area of research. Severity biomarkers are essential for personalizing treatment strategies and improving patient outcomes. This study aimed to identify sex-specific biomarkers for COVID-19 severity in a Chilean population (n = 123 female, n = 115 male), categorized as control, mild, moderate, or severe. Data were collected using clinical biochemistry parameters and mass spectrometry-based metabolomics and lipidomics to detect alterations in plasma cytokines, metabolites, and lipid profiles related to disease severity. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed to select significant characteristic features for each group. The results revealed distinct biomarkers for males and females. In males, COVID-19 severity of was associated with inflammation parameters, triglycerides content, and phospholipids profiles. For females, liver damage parameters, triglycerides content, cholesterol derivatives, and phosphatidylcholine were identified as severity biomarkers. For both sexes, most of the biomarker combinations evaluated got areas under the ROC curve greater than 0.8 and low prediction errors. These findings suggest that sex-specific biomarkers can help differentiate the levels of COVID-19 severity, potentially aiding in the development of tailored treatment approaches.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in the development of N-glycopeptide enrichment materials based on hydrophilic interaction chromatography.","authors":"Li Cheng, Mingxian Huang, Hui Ren, Yiqiang Wang, Hongmei Cui, Mingming Xu","doi":"10.1007/s00216-024-05708-9","DOIUrl":"https://doi.org/10.1007/s00216-024-05708-9","url":null,"abstract":"<p><p>Protein glycosylation is one of the most important post-translational modifications, implicated in the development of various diseases, including neurodegenerative diseases, diabetes, and cancers. However, the low content of glycoproteins in biological samples, the diversity and heterogeneity of glycan structures, and insensitive detection methods make glycosylation analysis challenging. As a result, efficient enrichment of glycopeptides from complex samples is a critical step. Efficient enrichment technology can increase the abundance of intact N-glycopeptides in complex biological samples, thereby improving the sensitivity and coverage of glycosylation analysis, which is of great significance for the accurate identification of biomarkers and the development of glycopeptide-based drugs. Among various separation methods for N-glycopeptides, hydrophilic interaction chromatography has received increasing attention, and a variety of enrichment materials have been developed. This article classifies and describes the relevant hydrophilic interaction chromatography materials and provides a comprehensive review of their applications in N-glycopeptide enrichment regarding selectivity, sensitivity, and enrichment performance. Future development trends of ideal glycopeptide enrichment materials are also discussed.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From spectroscopic data variability to optimal preprocessing: leveraging multivariate error in almond powder adulteration of different grain size.","authors":"Barbara Giussani, Manuel Monti, Jordi Riu","doi":"10.1007/s00216-024-05710-1","DOIUrl":"https://doi.org/10.1007/s00216-024-05710-1","url":null,"abstract":"<p><p>Analysing samples in their original form is increasingly crucial in analytical chemistry due to the need for efficient and sustainable practices. Analytical chemists face the dual challenge of achieving accuracy while detecting minute analyte quantities in complex matrices, often requiring sample pretreatment. This necessitates the use of advanced techniques with low detection limits, but the emphasis on sensitivity can conflict with efforts to simplify procedures and reduce solvent use. This article discusses the shift towards green analytical methods, focusing on portable spectroscopic techniques in the near-infrared (NIR) region. A case study involving the prediction of adulteration in almond flour with bitter almond flour illustrates the importance of particle size and the integration between the sample and the instrument. The study emphasizes the necessity of investigating the multivariate error associated with raw data to enhance data preprocessing strategies. This research provides valuable insights for professionals in the field, presenting a methodology applicable to a broad range of analytical applications while underscoring the critical role of raw data analysis in achieving accurate and reliable results.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alper Isleyen, Kemal Özcan, Murat Tunc, Aylin Boztepe, Fatma Gonca Coşkun, Kai Moshammer, Moaaz Shehab, Camelia Stratulat, Adriana Bratu, Katarina Hafner-Vuk, Jochen Vogl, Michał Strzelec, Mariana Villegas Calvo, Anne Mette Frey, Helena Strauss
{"title":"Development of three biofuel CRMs for the quality parameters in biodiesel and wood pellet via a joint research project.","authors":"Alper Isleyen, Kemal Özcan, Murat Tunc, Aylin Boztepe, Fatma Gonca Coşkun, Kai Moshammer, Moaaz Shehab, Camelia Stratulat, Adriana Bratu, Katarina Hafner-Vuk, Jochen Vogl, Michał Strzelec, Mariana Villegas Calvo, Anne Mette Frey, Helena Strauss","doi":"10.1007/s00216-024-05694-y","DOIUrl":"https://doi.org/10.1007/s00216-024-05694-y","url":null,"abstract":"<p><p>Biomass is a key element in biofuels which can be defined as a fuel produced through contemporary biological processes, and its increased use can support the EU's aims of reducing greenhouse gas emissions. Information on the nature and the quality of the biomass or biofuel is important in order to support the optimization of their combustion with respect to realizing higher efficiencies and lower emissions during energy production. Three reference materials were produced by a collaborative approach among national metrology institutes and designated institutes within the scope of the EMPIR project: BIOFMET. The project was aimed to establish advanced traceable measurement standards for the determination of the calorific value, impurities, and other parameters such as density, kinematic viscosity, moisture, and ash. This paper presents the sampling and processing methodology, homogeneity, stability, characterization campaign, the assignment of property values, and their associated uncertainties in compliance with ISO 17034 for biofuel reference materials: biodiesel, wood pellet powder, and wood pellet. Parameters of interest in biodiesel reference material-UME BIOFMET CRM 01 are gross calorific value (GCV), density, viscosity, and mass fractions of Ca, K, Mg, Na, P, and S elements. Parameters to be certified in wood pellet powder reference material-UME BIOFMET CRM 02 are GCV, moisture, ash, and mass fractions of Al, Cr, K, Mg, Mn, Ni, S, and Zn elements. Parameters to be certified in the wood pellet reference material-UME BIOFMET CRM 03 are GCV and moisture. The homogeneity and stability of the materials were assessed in accordance with ISO 33405. The materials were characterized by interlaboratory comparison studies among competent metrology institute and designated institute laboratories. Assigned values and uncertainties of the certified values were calculated in accordance with ISO 33405, and uncertainties include characterization, homogeneity, and stability components. The developed CRMs are intended to be used for the development and validation of measurement procedures for the determination and quality control/assurance purposes of the quality parameters for biofuels. It should be emphasized that the UME BIOFMET CRM 01-Biodiesel CRM is the first biodiesel reference material certified for calorific value. Among the developed wood CRMs, the pellet form, UME BIOFMET CRM 03, was found to be more stable than the powder one, UME BIOFMET CRM 02, for the moisture parameter. Sixfold lower relative uncertainty value for short-term stability at 45 °C and twofold lower relative uncertainty value for long-term stability at 22 °C were obtained for the moisture parameter of the CRM in pellet form compared to the CRM in powder form.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"My perspective of meaningful research for Analytical and Bioanalytical Chemistry.","authors":"Qiuquan Wang","doi":"10.1007/s00216-024-05698-8","DOIUrl":"https://doi.org/10.1007/s00216-024-05698-8","url":null,"abstract":"","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarína Šťastná, Ludmila Martínková, Lenka Rucká, Barbora Křístková, Romana Příhodová, Pavla Bojarová, Miroslav Pátek
{"title":"Design and development of spectrophotometric enzymatic cyanide assays.","authors":"Katarína Šťastná, Ludmila Martínková, Lenka Rucká, Barbora Křístková, Romana Příhodová, Pavla Bojarová, Miroslav Pátek","doi":"10.1007/s00216-024-05703-0","DOIUrl":"https://doi.org/10.1007/s00216-024-05703-0","url":null,"abstract":"<p><p>Determination of free cyanide (fCN) is required for various industrial, environmental, food, and clinical samples. Enzymatic methods are not widely used in this field despite their selectivity and mild conditions. Therefore, we present here a proof of concept for new spectrophotometric enzymatic assays of fCN. These are based on the hydrolysis of fCN affording the readily detectable NADH. fCN is hydrolyzed either in one step by cyanide dihydratase (CynD) or in two steps by cyanide hydratase (CynH) and formamidase (AmiF). An advantage of the latter route is the higher activity of CynH and AmiF compared to CynD. In both cases, the resulting formate is then transformed by an NAD-dependent formate dehydrogenase (FDH). The NADH thus formed is quantified colorimetrically using a known method based on a reduction of a tetrazolium salt (WST-8) with NADH. The developed assays of fCN are selective except for formic acid interference, proceed under mild conditions, and, moreover, fCN is detoxified during the reactions. The assays proceeded in a microtiter plate format. The limit of detection (LOD) and the limit of quantification (LOQ) were lower for the three-enzyme (CynH-AmiF-FDH) method (7.00 and 21.2 µmol/L, respectively) than for the two-enzyme (CynD-FDH) method (10.7 and 32.4 µmol/L, respectively). In conclusion, the new fCN assays presented in this work are selective, high-throughput, do not require harsh conditions, and use only small amounts of chemicals and enzymes.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Jiang, Zaiwei Song, Yi Ma, Xu Zhang, Hao Bing, Xin Xiong, Yang Hu, Fei Dong, Rongsheng Zhao
{"title":"Development, validation, and clinical application of LC-MS/MS method for simultaneous determination of ibrutinib, zanubrutinib, orelabrutinib, acalabrutinib, and their active metabolites in patients with B-cell lymphoma.","authors":"Dan Jiang, Zaiwei Song, Yi Ma, Xu Zhang, Hao Bing, Xin Xiong, Yang Hu, Fei Dong, Rongsheng Zhao","doi":"10.1007/s00216-024-05701-2","DOIUrl":"https://doi.org/10.1007/s00216-024-05701-2","url":null,"abstract":"<p><p>Bruton's tyrosine kinase inhibitors (BTKis) exhibit significant interindividual pharmacokinetics, making therapeutic drug monitoring (TDM) a promising approach for personalized therapy. However, simultaneous quantification of multiple BTKis poses technical challenges. A unified protocol for BTKis detection would be clinically desirable. Herein, we developed and validated a novel LC-MS/MS method for the simultaneous analysis of four BTKis including ibrutinib (IBR), zanubrutinib (ZAN), orelabrutinib (ORE), and acalabrutinib (ACB) and active metabolite of IBR and ACB (DIH and ACBM, respectively) in human plasma. The samples were prepared by liquid-liquid extraction using tert-butyl methyl ether. Ibrutinb-d4 (IS) was used as an internal standard. Chromatographic separation was obtained on an XBridge C18 column and connected to an LC-30AD system coupled to an API 4000<sup>+</sup> mass spectrometer. The mobile phase comprised 10 mM ammonium acetate containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. The optimized multiple reaction monitoring transitions of m/z 441.4 → 138.3, 475.4 → 304.2, 472.5 → 455.5, 428.3 → 411.5, 466.1 → 372.2, 482.2 → 388.4, and 445.5 → 142.5 were selected to inspect IBR, DIH, ZAN, ORE, ACB, ACBM, and IS, respectively. The method exhibited linearity from 1 to 1000 ng/mL (r > 0.99) for all analytes, with intra-day and inter-day precision of 1.8 to 9.7% and accuracy below 15%. Recovery ranged from 90.4 to 113.6%, and matrix effect varied from 89.3 to 111.0%. All compounds demonstrated stability under relevant conditions. Application of the method to 57 blood samples from 18 patients demonstrated high interpatient variability, with ORE plasma concentrations ranging from 25.6 to 89.9%. The validated LC-MS/MS method provides a feasible, specific, and rapid approach for quantification of BTKis in clinical settings. Simultaneous determination of four BTKis and their metabolites in a single extraction process and chromatographic run reduces analysis time, cost, and resources. The observed variability among individuals highlights the value of TDM for personalized treatment.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}