Enhanced electrochemical detection of acetaminophen using CoNi-LDH-based sensor with ultra-wide linear range and superior performance.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Jianxia Gu, Li Fan, Jian Bai, Zhanbin Jin, Tingting Wei
{"title":"Enhanced electrochemical detection of acetaminophen using CoNi-LDH-based sensor with ultra-wide linear range and superior performance.","authors":"Jianxia Gu, Li Fan, Jian Bai, Zhanbin Jin, Tingting Wei","doi":"10.1007/s00216-025-05901-4","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical sensors for acetaminophen (AP) determination often face limitations in linear range, rarely achieving millimolar levels. This work synthesized CoNi-LDH (cobalt-nickel layered double hydroxide) via a simple hydrothermal method. By optimizing the Co/Ni ratio, the sensor based on CoNi-LDH-1 demonstrates efficient AP detection with an ultra-wide linear range spanning from 5 μM to 5 mM, enabling versatile AP monitoring in diverse samples. Furthermore, the sensor also exhibits exceptional stability, reproducibility, and selectivity. Notably, it successfully quantified AP in real-world samples (tap water and urine) while maintaining a wide linear range. The superior performance of the sensor stems from CoNi-LDH-1's unique spiky sphere morphology, abundant active sites, enhanced electron transport capability, and the synergistic effect between Co and Ni components. This work provides valuable insights for expanding the linear range of electrochemical sensors, advancing their application in analytical chemistry.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05901-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical sensors for acetaminophen (AP) determination often face limitations in linear range, rarely achieving millimolar levels. This work synthesized CoNi-LDH (cobalt-nickel layered double hydroxide) via a simple hydrothermal method. By optimizing the Co/Ni ratio, the sensor based on CoNi-LDH-1 demonstrates efficient AP detection with an ultra-wide linear range spanning from 5 μM to 5 mM, enabling versatile AP monitoring in diverse samples. Furthermore, the sensor also exhibits exceptional stability, reproducibility, and selectivity. Notably, it successfully quantified AP in real-world samples (tap water and urine) while maintaining a wide linear range. The superior performance of the sensor stems from CoNi-LDH-1's unique spiky sphere morphology, abundant active sites, enhanced electron transport capability, and the synergistic effect between Co and Ni components. This work provides valuable insights for expanding the linear range of electrochemical sensors, advancing their application in analytical chemistry.

超宽线性范围、性能优越的coni - ldh传感器增强对乙酰氨基酚的电化学检测。
电化学传感器对乙酰氨基酚(AP)的测定往往面临线性范围的限制,很少达到毫摩尔水平。本文采用简单的水热法合成了钴镍层状双氢氧化物(CoNi-LDH)。通过优化Co/Ni比,基于CoNi-LDH-1的传感器具有5 μM至5 mM的超宽线性范围,能够在不同样品中实现多功能的AP监测。此外,该传感器还具有优异的稳定性、可重复性和选择性。值得注意的是,它成功地量化了现实世界样品(自来水和尿液)中的AP,同时保持了很宽的线性范围。CoNi-LDH-1独特的尖球形态、丰富的活性位点、增强的电子传递能力以及Co和Ni组分之间的协同效应是传感器优越性能的主要原因。这项工作为扩大电化学传感器的线性范围,推进其在分析化学中的应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信