{"title":"Probabilistic performance analysis of structural elements subjected to blast load using equivalent static force model","authors":"A. Bhatt, P. Maheshwari, Pradeep Bhargava","doi":"10.1177/20414196221142905","DOIUrl":"https://doi.org/10.1177/20414196221142905","url":null,"abstract":"This study presents a probabilistic analysis of a single degree of freedom (SDOF) system subjected to drift-controlled distant blast loading employing Monte-Carlo simulation using MATLAB. The simulations are achieved using an equivalent static force (ESF)–based model as the deterministic model. The loading and structural parameters are treated as random variables in the parametric sensitivity analysis. ESF factor and the resistance of the SDOF system are observed as the response parameters. ESF factor is found to be highly sensitive to positive pulse duration, whilst the resistance is found to be more sensitive to both positive pulse duration and the peak blast force. With the log-normal distribution of input parameters, the ESF factor and the resistance of the SDOF system follow the log-normal distribution. The present study suggests that the probabilistic analysis is more conservative than the deterministic analysis. The uncertainty can be incorporated in a deterministic approach for both analysis and design purposes by opting suitable factor of safety (FOS) based on probabilistic analysis.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140089271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of perforated corrugated steel columns subjected to bilateral cyclic loading","authors":"A. Albarram, Qusay Al-Kaseasbeh","doi":"10.1177/20414196241235321","DOIUrl":"https://doi.org/10.1177/20414196241235321","url":null,"abstract":"This research unveils numerical analysis of corrugated-shaped steel columns (CSCs) with perforations during seismic events. Using ABAQUS software, 34 tests were examined under constant and bilateral cyclic loads. Varying parameters involved numbers and levels of perforations, corrugation geometries, and steel thickness. Findings exhibited a favorable performance of CSCs with six corrugated geometries as compared with ones with four corrugated geometries. The enhancement in load capacities and ductility were reported at 25–32% and 40%, respectively. CSCs were seen most vulnerable to experience load capacity deterioration when perforations were located in the lower quarter zone of height. The maximum corresponding decline exceeded 30% among tests having all corrugated geometry faces perforated. Local buckling failure in the lower quarter zone was dominant in most cases with severe deformation observed by the presence of perforations in such zone. Increasing the steel thickness of CSCs improved load capacities satisfactorily and shifted the local buckling to outward buckling, and controlling the failure patterns. This research emphasizes the need for perforations in such innovative cross-section steel columns to play as service conducing area and cost-effective factor. The research also provides applicable solutions to optimize the structural behavior of CSCs and maintain safer design during seismic incidents.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140438013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Dominguez Santos, Francisco Pallares Rubio, Pedro Muñoz
{"title":"Vulnerability of reinforced concrete frames using anti-seismic hysteretic devices for the Lorca earthquake (2011)","authors":"David Dominguez Santos, Francisco Pallares Rubio, Pedro Muñoz","doi":"10.1177/20414196241233755","DOIUrl":"https://doi.org/10.1177/20414196241233755","url":null,"abstract":"Many buildings around the world are extremely vulnerable to serious and moderate earthquakes. Base isolation and energy dissipators are the traditional techniques in anti-seismic designs. The present paper focuses on the suitability of using hysteretic energy dissipators in braced buildings in low-to-medium seismic zones, such as southeast Spain. To this end, static (Push-over) and dynamic analyses have been carried out using the record of the Lorca earthquake (2011) in its most unfavorable direction (N-S), using reinforced concrete frames of low (5 stories frame), medium (10 stories frame), and high height (15 stories frame) with hysteretic dissipators (based on metal plasticization) and economical and easy-to-use devices. The results show that this type of solution is appropriate in the case described and indicate the advantages and disadvantages of its use in buildings in the study area. The results show that the effectiveness of the dissipative devices increases with the height of the frames, in terms of displacements, resistance, and distribution of moments in the primary structural elements of the frames (beams and columns).","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140439948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Explosive field trial for repetitive testing of VBIEDs to probabilistically measure blast and fragmentation hazards","authors":"Mark G. Stewart, M. Netherton, Hao Qin, Jun Li","doi":"10.1177/20414196241233757","DOIUrl":"https://doi.org/10.1177/20414196241233757","url":null,"abstract":"This paper describes results from an explosive field trial of the detonation of Vehicle-Borne Improvised Explosive Devices (VBIEDs). The purpose of the trials is to replicate tests with identical car type and explosive mass to help probabilistically characterise the uncertainty and variability of blast pressures and fragment hazards. These variabilities may be considerable, and it is important to recognise that the world is not deterministic. The paper describes the spatial variability (directionality) of incident pressure, impulse and time of positive phase duration, and compares these to results from a bare charge, and the hemispherical surface burst Kingery and Bulmash polynomials often used for predicting blast loads from IEDs, such as ConWep. This also allows directional airblast factors to be quantified. The spatial distribution of over 26,000 fragments on the ground is also presented over the 250 m × 300 m test arena. The fragment densities and velocities obtained from the witness panels are also described, and preliminary fatality risks were estimated. These data may help develop or validate airblast and fragment hazard numerical or other models. Ultimately, probabilistic approaches will provide decision support for the determination of safety distance and risk reduction measures to prevent fatality and injury from blast pressure and fragmentation hazards.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139840422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Explosive field trial for repetitive testing of VBIEDs to probabilistically measure blast and fragmentation hazards","authors":"Mark G. Stewart, M. Netherton, Hao Qin, Jun Li","doi":"10.1177/20414196241233757","DOIUrl":"https://doi.org/10.1177/20414196241233757","url":null,"abstract":"This paper describes results from an explosive field trial of the detonation of Vehicle-Borne Improvised Explosive Devices (VBIEDs). The purpose of the trials is to replicate tests with identical car type and explosive mass to help probabilistically characterise the uncertainty and variability of blast pressures and fragment hazards. These variabilities may be considerable, and it is important to recognise that the world is not deterministic. The paper describes the spatial variability (directionality) of incident pressure, impulse and time of positive phase duration, and compares these to results from a bare charge, and the hemispherical surface burst Kingery and Bulmash polynomials often used for predicting blast loads from IEDs, such as ConWep. This also allows directional airblast factors to be quantified. The spatial distribution of over 26,000 fragments on the ground is also presented over the 250 m × 300 m test arena. The fragment densities and velocities obtained from the witness panels are also described, and preliminary fatality risks were estimated. These data may help develop or validate airblast and fragment hazard numerical or other models. Ultimately, probabilistic approaches will provide decision support for the determination of safety distance and risk reduction measures to prevent fatality and injury from blast pressure and fragmentation hazards.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139780313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of fibre orientation parallel to impact direction on the impact response of unidirectional glass/epoxy composite: Experimental investigation on confinement and hybridisation","authors":"B. Ramagiri, C. S. Yerramalli, Nabodyuti Das","doi":"10.1177/20414196241232676","DOIUrl":"https://doi.org/10.1177/20414196241232676","url":null,"abstract":"In a high-velocity impact phenomenon, the damage is localised, and for thick composite laminates, most of the projectile’s kinetic energy is absorbed through out-of-plane compression and shear mechanisms. In conventional composite laminate, as the fibre orientations are in the in-plane of laminate, the out-of-plane compression and out-of-plane shear of laminate are utilised. In composites, the out-of-plane compressive strength is significantly lower than the in-plane (fibre direction) strength. The present study investigates the impact response of unidirectional (UD) glass/epoxy composite targets with fibres oriented parallel to the impact direction. The lack of research on the impact behaviour of unidirectional glass/epoxy composites with fibre orientation parallel to the impact direction demands further experimentation and understanding of failure mechanisms. In this study, firstly, the impact response of UD glass/epoxy composites with fibres oriented parallel to the impact direction (GFID) was investigated and compared with conventional cross-ply (GFCP) and quasi-isotropic (GFQI) glass/epoxy laminates. Secondly, to address the issues of GFID splitting on impact, GFID was confined in both the hoop and normal-to-binder directions. Thirdly, the impact response of various hybrid GFID with and without confinement with GFCP as backing was evaluated. GFID under out-of-plane punch load fails by splitting, and its compressive participation depends on the impact velocity. GFID under the hoop and normal-to-binder direction confinement showed better specific impact energy absorption relative to pure GFID. The experimental results show that GFID wounds with carbon fibre used as a facing with GFCP as a backing provide better impact resistance at HVI conditions than conventional laminates of the same thickness. These findings suggest that the combination of GFID and GFCP targets can be used to have better impact resistance in various applications.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139846155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of fibre orientation parallel to impact direction on the impact response of unidirectional glass/epoxy composite: Experimental investigation on confinement and hybridisation","authors":"B. Ramagiri, C. S. Yerramalli, Nabodyuti Das","doi":"10.1177/20414196241232676","DOIUrl":"https://doi.org/10.1177/20414196241232676","url":null,"abstract":"In a high-velocity impact phenomenon, the damage is localised, and for thick composite laminates, most of the projectile’s kinetic energy is absorbed through out-of-plane compression and shear mechanisms. In conventional composite laminate, as the fibre orientations are in the in-plane of laminate, the out-of-plane compression and out-of-plane shear of laminate are utilised. In composites, the out-of-plane compressive strength is significantly lower than the in-plane (fibre direction) strength. The present study investigates the impact response of unidirectional (UD) glass/epoxy composite targets with fibres oriented parallel to the impact direction. The lack of research on the impact behaviour of unidirectional glass/epoxy composites with fibre orientation parallel to the impact direction demands further experimentation and understanding of failure mechanisms. In this study, firstly, the impact response of UD glass/epoxy composites with fibres oriented parallel to the impact direction (GFID) was investigated and compared with conventional cross-ply (GFCP) and quasi-isotropic (GFQI) glass/epoxy laminates. Secondly, to address the issues of GFID splitting on impact, GFID was confined in both the hoop and normal-to-binder directions. Thirdly, the impact response of various hybrid GFID with and without confinement with GFCP as backing was evaluated. GFID under out-of-plane punch load fails by splitting, and its compressive participation depends on the impact velocity. GFID under the hoop and normal-to-binder direction confinement showed better specific impact energy absorption relative to pure GFID. The experimental results show that GFID wounds with carbon fibre used as a facing with GFCP as a backing provide better impact resistance at HVI conditions than conventional laminates of the same thickness. These findings suggest that the combination of GFID and GFCP targets can be used to have better impact resistance in various applications.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139786263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical modeling and simulation of cable barriers under vehicular impacts on a sloped median","authors":"Qian Wang, Emre Palta, H. Fang","doi":"10.1177/20414196241226725","DOIUrl":"https://doi.org/10.1177/20414196241226725","url":null,"abstract":"Cable barriers are flexible barrier systems that are commonly used as median barriers in the United States for their general effectiveness and low installation and maintenance costs. The current cable median barrier (CMB) adopted by the North Carolina Department of Transportation was previously evaluated on flat terrain and found to satisfy the requirements of the National Cooperative Highway Research Program Report 350. Under in-service conditions (i.e., on a sloped median), the current CMB failed to stop small passenger cars in many incidents. The new roadside safety standard, Manual for Assessing Safety Hardware (MASH), recommends that CMBs be tested and/or evaluated on sloped medians. However, conducting full-scale crash tests on sloped median is extremely difficult and few experimental studies exist. In this study, finite element simulations were used to evaluate the performance of the current CMB design on a 6H:1V sloped median under MASH Test Level 3 conditions. To address the issue of vehicle underriding on the current CMB, two retrofit designs were developed and also evaluated on the sloped median. Two MASH compliant vehicles, a 1996 Dodge Neon and a 2006 Ford F250, were used to evaluate all three CMBs from both frontside and backside and with two initial impact points. The MASH exit-box criterion, MASH Evaluation criteria A, D, and F, vehicular responses, exit angles, and residual velocities were used to evaluate the CMB performance for structural adequacy, occupant risk, and post-impact trajectories. The simulation results showed that one of the retrofit designs could improve the CMB performance on a sloped median at MASH Test Level 3 conditions.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139446204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study of the low-velocity impact behavior of open-cell aluminum foam made by the infiltration method","authors":"M. Hajizadeh, Mojtaba Yazdani, Hosein Khodarahmi","doi":"10.1177/20414196231225812","DOIUrl":"https://doi.org/10.1177/20414196231225812","url":null,"abstract":"This study examined the behavior and energy absorption of open-cell aluminum foam under different loading conditions. The foam was made by infiltration, a low-cost method that produced a uniform pore distribution. The foam was compressed using two machines with varying impact velocities and weights. The stress–strain and energy absorption curves of the foam were measured and analyzed. The results showed that the strain rate and the impact weight affected the compressive properties and energy absorption of the foam. The strain rate up to 264 s−1 with constant mass did not affect the plateau stress, which was the constant stress in the plastic region. However, at 264 s−1, increasing the impact weight increased the plateau stress and the energy absorption of the foam, which showed that the strain rate sensitivity depended on the impact inertia. The study revealed the dynamic characteristics of open-cell aluminum foam made by infiltration and provided insights for its use in impact protection. The study also showed that infiltration was a reliable and consistent method for making open-cell aluminum foam. The study highlighted the important roles of plateau stress and hardening effect in influencing the energy absorption of the foam under dynamic loading. The study suggested that future studies should consider the impact inertia as a parameter that affects the strain rate sensitivity of the foam.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wave-absorbing performance of alumina thin-walled hollow particles under freezing condition","authors":"Pengzhi Yan, Yu Wang, Pengxian Fan, Mingyang Wang","doi":"10.1177/20414196231226240","DOIUrl":"https://doi.org/10.1177/20414196231226240","url":null,"abstract":"The reliability of the absorbing layer is crucial for realizing protective engineering’s protection function. However, the typical wave-absorbing material, sand, is unable to fulfill its intended wave-absorbing function in areas with seasonally frozen soil. This is because the internal pores of the material become filled with ice and the particles freeze. To address this issue, alumina thin-walled hollow particles were chosen as a new wave-absorbing material. These particles can introduce the gas phase into the absorbing layer which is essential for attenuating the stress waves and its wave-absorbing capacity under freezing conditions was investigated by the split Hopkinson bar (SHPB) test. According to the test data, the alumina thin-walled hollow particles are less dense than sand and have a lower wave impedance, allowing them to reflect more incident energy. Moreover, these particles have a better capacity for dissipating the absorbed energy, as compared to sand. Under freezing circumstances, the average transmittance coefficient of alumina thin-walled hollow particles is only 21.95% to 49.30% of ordinary sand. Additionally, the particle size positively correlates with the capacity for wave-absorption. The capacity of alumina thin-walled hollow particles to shatter and release the gas phase under impact stress significantly increases the compressibility of the absorbing layer under freezing conditions, which accounts for their enhanced wave-absorbing effectiveness. The stress-strain curve specifically manifests as a smoother curve and a longer stage of plastic energy dissipation. Other than that, the dynamic deformation modulus of the material and peak stress is lower, while the peak strain is larger. The findings of this study provide a low-cost, high-reliability solution to the problem of frost damage in the absorbing layer in regions with seasonal freezing.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}