{"title":"Influence of prestressing force on performance of concrete plates under impact loading","authors":"Vimal Kumar, M. Iqbal, AK Mittal","doi":"10.1177/20414196231187003","DOIUrl":null,"url":null,"abstract":"An experimental and numerical study has been performed to explore the performance of one-way pretensioned concrete plates against impact loading. The impact resistance, experimental results and damage within the pretensioned concrete have been compared with the non-pretensioned concrete. The plate specimens of concrete grades M40 and M60 have been pretensioned to prestress level 10 and 20% of the compressive strength of the concrete. While, all the tendons employed in the non-pretensioned concrete were kept unstressed. The plates were struck at the mid-span by a steel mass (242.85 kg) dropped from 0.5 to 1.0 m heights. The numerical simulations have been executed using explicit finite element code considering the Holmquist–Johnson–Cook (HJC) and the metal plasticity model for concrete and steel, correspondingly. The performance of the plates is governed by the grade of concrete, impact energy and level of the prestress within the concrete. The induced prestress within the concrete enhanced the stiffness and, consequently, the impact resistance of the pretensioned concrete plates. The pretensioned concrete hence witnessed increased impact force and reduced deflection by 18.1% and 11.0%, correspondingly, compared to the non-pretensioned concrete. The splitting and punching crack within the plates became pronounced once the drop height increased from 0.5 m to 1.0 m. The simulations have estimated the peak impact force and reaction within 19.7% and 15.5% deviation, respectively. The displacement and energy absorption have been calculated using an analytical methodology closely correlated with the actual results within 18% and 14% deviation, respectively. Further, the simulations performed on two-way pretensioned concrete have shown improved performance of the plates witnessing no splitting crack and uniform crack distribution compared to one-way pretensioned concrete.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Protective Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196231187003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
An experimental and numerical study has been performed to explore the performance of one-way pretensioned concrete plates against impact loading. The impact resistance, experimental results and damage within the pretensioned concrete have been compared with the non-pretensioned concrete. The plate specimens of concrete grades M40 and M60 have been pretensioned to prestress level 10 and 20% of the compressive strength of the concrete. While, all the tendons employed in the non-pretensioned concrete were kept unstressed. The plates were struck at the mid-span by a steel mass (242.85 kg) dropped from 0.5 to 1.0 m heights. The numerical simulations have been executed using explicit finite element code considering the Holmquist–Johnson–Cook (HJC) and the metal plasticity model for concrete and steel, correspondingly. The performance of the plates is governed by the grade of concrete, impact energy and level of the prestress within the concrete. The induced prestress within the concrete enhanced the stiffness and, consequently, the impact resistance of the pretensioned concrete plates. The pretensioned concrete hence witnessed increased impact force and reduced deflection by 18.1% and 11.0%, correspondingly, compared to the non-pretensioned concrete. The splitting and punching crack within the plates became pronounced once the drop height increased from 0.5 m to 1.0 m. The simulations have estimated the peak impact force and reaction within 19.7% and 15.5% deviation, respectively. The displacement and energy absorption have been calculated using an analytical methodology closely correlated with the actual results within 18% and 14% deviation, respectively. Further, the simulations performed on two-way pretensioned concrete have shown improved performance of the plates witnessing no splitting crack and uniform crack distribution compared to one-way pretensioned concrete.