AIMS Microbiology最新文献

筛选
英文 中文
Potential of biosurfactant as green pharmaceutical excipients for coating of microneedles: A mini review. 生物表面活性剂作为绿色药用辅料用于微针包衣的潜力:微型综述。
IF 2.7
AIMS Microbiology Pub Date : 2024-07-30 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024028
Marzieh Sajadi Bami, Payam Khazaeli, Shayan Fakhraei Lahiji, Gholamreza Dehghannoudeh, Ibrahim M Banat, Mandana Ohadi
{"title":"Potential of biosurfactant as green pharmaceutical excipients for coating of microneedles: A mini review.","authors":"Marzieh Sajadi Bami, Payam Khazaeli, Shayan Fakhraei Lahiji, Gholamreza Dehghannoudeh, Ibrahim M Banat, Mandana Ohadi","doi":"10.3934/microbiol.2024028","DOIUrl":"10.3934/microbiol.2024028","url":null,"abstract":"<p><p>Microneedles, a novel transdermal delivery system, were designed to improve drug delivery and address the challenges typically encountered with traditional injection practices. Discovering new and safe excipients for microneedle coating to replace existing chemical surfactants is advantageous to minimize their side effect on viable tissues. However, some side effects have also been observed for this application. The vast majority of studies suggest that using synthetic surfactants in microneedle formulations may result in skin irritation among other adverse effects. Hence, increasing knowledge about these components and their potential impacts on skin paves the way for finding preventive strategies to improve their application safety and potential efficacy. Biosurfactants, which are naturally produced surface active microbial products, are proposed as an alternative to synthetic surfactants with reduced side effects. The current review sheds light on potential and regulatory aspects of biosurfactants as safe excipients in the coating of microneedles.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"596-607"},"PeriodicalIF":2.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of high throughput DNA analysis to characterize the nodule-associated bacterial community from four ages of Inga punctata trees in a Costa Rican cloud forest. 利用高通量 DNA 分析鉴定哥斯达黎加云雾林中四种树龄的 Inga punctata 树的结核相关细菌群落。
IF 2.7
AIMS Microbiology Pub Date : 2024-07-23 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024027
William D Eaton, Debra A Hamilton, Wen Chen, Alexander Lemenze, Patricia Soteropoulos
{"title":"Use of high throughput DNA analysis to characterize the nodule-associated bacterial community from four ages of <i>Inga punctata</i> trees in a Costa Rican cloud forest.","authors":"William D Eaton, Debra A Hamilton, Wen Chen, Alexander Lemenze, Patricia Soteropoulos","doi":"10.3934/microbiol.2024027","DOIUrl":"10.3934/microbiol.2024027","url":null,"abstract":"<p><p>Leguminous tree root nodule nitrogen-fixing bacteria are critical for recuperation of soil C and N cycle processes after disturbance in tropical forests, while other nodule-associated bacteria (NAB) may enhance nodule development and activity, and plant growth. However, little is known of these root nodule microbiomes. Through DNA analysis, we evaluated the bacterial taxa associated with the root nodules of the 1-year-old, 2-year-old, 13-year-old, and old growth <i>Inga punctata</i> trees in a cloud forest. <i>Bradyrhizobium diazoefficiens</i> was the dominant taxon found in all nodules at 63.16% to 85.71% mean percent sequences (MPS) of the total nodule bacterial DNA and was found in the youngest nodules examined (1 year old), suggesting that it is the primary nodular bacteria. There were 26 other NAB genera with collective MPS levels between 7.4% to 12.2%, while 15 of these genera were found in the Bulk Forest soils at collective MPS levels of 4.6%. These bacterial community compositions were different between the NAB and Bulk Forest soils, suggesting the NAB became concentrated within the root nodules, resulting in communities with different compositions from the Bulk Forest soils. Twenty-three of the 26 NAB genera were previously identified with the potential to perform 9 plant growth promoting (PGP) activities, suggesting their importance in root nodule development and plant growth. These NAB communities appeared to successionally develop over time into more complex taxonomic communities, which is consistent with the outcome of advanced microbial communities following succession. The presence of both <i>B. diazoefficiens</i> and the NAB communities in the nodules across all ages of tree roots, and the potential for PGP activities linked with most of the NAB genera, suggest the importance of <i>B. diazoefficiens</i> and the NAB community for nodule development and enhanced development and growth of <i>I. punctata</i> throughout its lifespan, and most critically in the younger plants.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"572-595"},"PeriodicalIF":2.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial feed additives in ruminant feeding. 反刍动物饲料中的微生物饲料添加剂。
IF 2.7
AIMS Microbiology Pub Date : 2024-07-11 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024026
Ahmed E Kholif, Anuoluwapo Anele, Uchenna Y Anele
{"title":"Microbial feed additives in ruminant feeding.","authors":"Ahmed E Kholif, Anuoluwapo Anele, Uchenna Y Anele","doi":"10.3934/microbiol.2024026","DOIUrl":"10.3934/microbiol.2024026","url":null,"abstract":"<p><p>The main purposes of feed additives administration are to increase feed quality, feed utilization, and the performance and health of animals. For many years, antibiotic-based feed additives showed promising results; however, their administration in animal feeds has been banned due to some public concerns regarding their residues in the produced milk and meat from treated animals. Some microorganisms have desirable properties and elicit certain effects, which makes them potential alternatives to antibiotics to enhance intestinal health and ruminal fermentation. The commonly evaluated microorganisms are some species of bacteria and yeasts. Supplementing microorganisms to ruminants boosts animal health, feed digestion, ruminal fermentation, animal performance (meat and milk), and feed efficiency. Moreover, feeding microorganisms helps young calves adapt quickly to consume solid feed and prevents thriving populations of enteric pathogens in the gastrointestinal tract which cause diarrhea. <i>Lactobacillus</i>, <i>Streptococcus</i>, <i>Lactococcus</i>, <i>Bacillus</i>, <i>Enterococcus</i>, <i>Bifidobacterium</i>, <i>Saccharomyces cerevisiae</i>, and <i>Aspergillus oryzae</i> are the commonly used microbial feed additives in ruminant production. The response of feeding such microorganisms depends on many factors including the level of administration, diet fed to animal, physiological status of animal, and many other factors. However, the precise modes of action in which microbial feed additives improve nutrient utilization and livestock production are under study. Therefore, we aim to highlight some of the uses of microorganisms-based feed additives effects on animal production, the modes of action of microorganisms, and their potential use as an alternative to antibiotic feed additives.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"542-571"},"PeriodicalIF":2.7,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osmotolerant plant growth promoting bacteria mitigate adverse effects of drought stress on wheat growth. 耐渗透植物生长促进菌减轻了干旱胁迫对小麦生长的不利影响。
IF 2.7
AIMS Microbiology Pub Date : 2024-07-09 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024025
Naoual Bouremani, Hafsa Cherif-Silini, Allaoua Silini, Nour El Houda Rabhi, Ali Chenari Bouket, Lassaad Belbahri
{"title":"Osmotolerant plant growth promoting bacteria mitigate adverse effects of drought stress on wheat growth.","authors":"Naoual Bouremani, Hafsa Cherif-Silini, Allaoua Silini, Nour El Houda Rabhi, Ali Chenari Bouket, Lassaad Belbahri","doi":"10.3934/microbiol.2024025","DOIUrl":"10.3934/microbiol.2024025","url":null,"abstract":"<p><p>Drought stress represents a major constraint with significant impacts on wheat crop globally. The use of plant growth-promoting bacteria (PGPB) has emerged as a promising strategy to alleviate the detrimental impacts of water stress and enhance plant development. We investigated 24 strains from diverse ecosystems, assessed for PGP traits and tolerance ability to abiotic stresses (drought, salinity, temperature, pH, heavy metals, pollutants, herbicides, and fungicides). The most effective bacterial strains <i>Providencia vermicola</i> ME1, <i>Pantoea agglomerans</i> Pa, <i>Pseudomonas knackmussi</i> MR6, and <i>Bacillus</i> sp D13 were chosen. Furthermore, these strains exhibited PGP activities under osmotic stress (0, 10, 20, and 30% PEG-6000). The impact of these osmotolerant PGPBs on wheat (<i>Triticum durum</i> L.) growth under drought stress was assessed at two plant growth stages. In an <i>in vitro</i> wheat seed germination experiment, bacterial inoculation significantly enhanced germination parameters. In pot experiments, the potential of these bacteria was evaluated in wheat plants under three treatments: Well-watered (100% field capacity), moderate stress (50% FC), and severe stress (25% FC). Results showed a significant decline in wheat growth parameters under increasing water stress for uninoculated seedlings. In contrast, bacterial inoculation mitigated these adverse effects, significantly improving morphological parameters and chlorophyll pigment contents under the stress conditions. While malondialdehyde (lipid peroxidation) and proline contents increased significantly with drought intensity, they decreased after bacterial inoculation. The antioxidant enzyme activities (GPX, CAT, and SOD) in plants decreased after bacterial inoculation. The increased root colonization capacity observed under water stress was attributed to their ability to favorable adaptations in a stressful environment. This study highlighted the potential of selected PGPB to alleviate water stress effects on wheat, promoting practical applications aimed at enhancing crop resilience under conditions of water shortage.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"507-541"},"PeriodicalIF":2.7,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing chickpea bacterial endophytes for improved plant health and fitness. 利用鹰嘴豆细菌内生菌改善植物健康和体质。
IF 2.7
AIMS Microbiology Pub Date : 2024-07-08 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024024
Yulduzkhon Abdullaeva, Gulsanam Mardonova, Farkhod Eshboev, Massimiliano Cardinale, Dilfuza Egamberdieva
{"title":"Harnessing chickpea bacterial endophytes for improved plant health and fitness.","authors":"Yulduzkhon Abdullaeva, Gulsanam Mardonova, Farkhod Eshboev, Massimiliano Cardinale, Dilfuza Egamberdieva","doi":"10.3934/microbiol.2024024","DOIUrl":"10.3934/microbiol.2024024","url":null,"abstract":"<p><p>Endophytic bacteria live asymptomatically inside the tissues of host plants without inflicting any damage. Endophytes can confer several beneficial traits to plants, which can contribute to their growth, development, and overall health. They have been found to stimulate plant growth by enhancing nutrient uptake and availability. They can produce plant growth-promoting substances such as auxins, cytokinins, and gibberellins, which regulate various aspects of plant growth and development. Endophytes can also improve root system architecture, leading to increased nutrient and water absorption. Some endophytes possess the ability to solubilize nutrients, such as phosphorus and potassium, making them more available for plant uptake, and fixing atmospheric nitrogen. Chickpea (<i>Cicer arietinum</i>) is a major legume crop that has mutualistic interactions with endophytes. These endophytes can benefit the chickpea plant in various ways, including higher growth, improved nutrient uptake, increased tolerance to abiotic and biotic stressors, and disease suppression. They can produce enzymes and metabolites that scavenge harmful reactive oxygen species, thus reducing oxidative stress. Moreover, several studies reported that endophytes produce antimicrobial compounds, lytic enzymes, and volatile organic compounds that inhibit the growth of fungal pathogens and trigger systemic defense responses in plants, leading to increased resistance against a broad range of pathogens. They can activate plant defense pathways, including the production of defense-related enzymes, phytoalexins, and pathogenesis-related proteins, thereby providing long-lasting protection. It is important to note that the diversity and function of chickpea-associated endophytes can vary depending on factors such as variety, geographical location, and environmental conditions. The mechanisms behind the plant-beneficial interactions are still being intensively explored. In this review, new biotechnologies in agricultural production and ecosystem stability were presented. Thus, harnessing chickpea endophytes could be exploited in developing drought-resistant cultivars that can maintain productivity in arid and semi-arid environments, crucial for meeting the global demand for chickpeas.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"489-506"},"PeriodicalIF":2.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salmonella in the food chain within the Gulf Cooperation Council countries. 海湾合作委员会国家食物链中的沙门氏菌。
IF 2.7
AIMS Microbiology Pub Date : 2024-06-25 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024023
Mohamed-Yousif Ibrahim Mohamed, Ihab Habib, Hazim O Khalifa
{"title":"<i>Salmonella</i> in the food chain within the Gulf Cooperation Council countries.","authors":"Mohamed-Yousif Ibrahim Mohamed, Ihab Habib, Hazim O Khalifa","doi":"10.3934/microbiol.2024023","DOIUrl":"10.3934/microbiol.2024023","url":null,"abstract":"<p><p>Infections caused by bacteria originating from tainted food sources are a widespread concern due to their large economic impact and detrimental effects on public health. We aimed to explore literature focusing on the presence of <i>Salmonella</i> in the food supply chains of Gulf Cooperation Council (GCC) countries and to provide an overview of available information concerning health-related issues and the status of salmonellosis in humans in GCC countries. The reviewed evidence underscored a gap in our comprehensive understanding of the prevalence of <i>Salmonella</i> in the food supply of GCC countries. Molecular characterization efforts to pinpoint the sources of <i>Salmonella</i> in these nations were limited. Surveys targeting <i>Salmonella</i> in the food supply of GCC countries have been infrequent. While qualitative data indicated the presence or absence of <i>Salmonella</i>, there was a noticeable lack of quantitative data detailing the actual quantities of these bacteria in chicken meat supplies across GCC countries. Although reports regarding <i>Salmonella</i> in animal-derived foods were common, the literature highlighted in this review emphasized the persistent challenge that <i>Salmonella</i> pose to food safety and public health in GCC countries. Addressing this issue requires concerted efforts to enhance surveillance, improve control measures, and promote greater awareness among stakeholders in the food supply chain.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"468-488"},"PeriodicalIF":2.7,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant beneficial traits of endophytic bacteria associated with fennel (Foeniculum vulgare Mill.). 与茴香(Foeniculum vulgare Mill.)相关的内生细菌对植物有益的特性。
IF 2.7
AIMS Microbiology Pub Date : 2024-06-18 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024022
Vyacheslav Shurigin, Li Li, Burak Alaylar, Dilfuza Egamberdieva, Yong-Hong Liu, Wen-Jun Li
{"title":"Plant beneficial traits of endophytic bacteria associated with fennel (<i>Foeniculum vulgare</i> Mill.).","authors":"Vyacheslav Shurigin, Li Li, Burak Alaylar, Dilfuza Egamberdieva, Yong-Hong Liu, Wen-Jun Li","doi":"10.3934/microbiol.2024022","DOIUrl":"10.3934/microbiol.2024022","url":null,"abstract":"<p><p>In this study, we used 16S rRNA gene sequence analysis to describe the diversity of cultivable endophytic bacteria associated with fennel (<i>Foeniculum vulgare</i> Mill.) and determined their plant-beneficial traits. The bacterial isolates from the roots of fennel belonged to four phyla: <i>Firmicutes</i> (BRN1 and BRN3), <i>Proteobacteria</i> (BRN5, BRN6, and BRN7), <i>Gammaproteobacteria</i> (BRN2), and <i>Actinobacteria</i> (BRN4). The bacterial isolates from the shoot of fennel represented the phyla <i>Proteobacteria</i> (BSN1, BSN2, BSN3, BSN5, BSN6, BSN7, and BSN8), <i>Firmicutes</i> (BSN4, BRN1, and BRN3), and <i>Actinobacteria</i> (BRN4). The bacterial species <i>Bacillus megaterium</i>, <i>Bacillus aryabhattai</i>, and <i>Brevibacterium frigoritolerans</i> were found both in the roots and shoots of fennel. The bacterial isolates were found to produce siderophores, HCN, and indole-3-acetic acid (IAA), as well as hydrolytic enzymes such as chitinase, protease, glucanase, and lipase. Seven bacterial isolates showed antagonistic activity against <i>Fusarium culmorum</i>, <i>Fusarium solani</i>, and <i>Rhizoctonia. solani</i>. Our findings show that medicinal plants with antibacterial activity may serve as a source for the selection of microorganisms that exhibit antagonistic activity against plant fungal infections and may be considered as a viable option for the management of fungal diseases. They can also serve as an active part of biopreparation, improving plant growth.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 2","pages":"449-467"},"PeriodicalIF":2.7,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of plant growth-promoting bacteria to facilitate phytoremediation. 利用植物生长促进菌促进植物修复。
IF 2.7
AIMS Microbiology Pub Date : 2024-06-12 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024021
Elisa Gamalero, Bernard R Glick
{"title":"Use of plant growth-promoting bacteria to facilitate phytoremediation.","authors":"Elisa Gamalero, Bernard R Glick","doi":"10.3934/microbiol.2024021","DOIUrl":"10.3934/microbiol.2024021","url":null,"abstract":"<p><p>Here, phytoremediation studies of toxic metal and organic compounds using plants augmented with plant growth-promoting bacteria, published in the past few years, were summarized and reviewed. These studies complemented and extended the many earlier studies in this area of research. The studies summarized here employed a wide range of non-agricultural plants including various grasses indigenous to regions of the world. The plant growth-promoting bacteria used a range of different known mechanisms to promote plant growth in the presence of metallic and/or organic toxicants and thereby improve the phytoremediation ability of most plants. Both rhizosphere and endophyte PGPB strains have been found to be effective within various phytoremediation schemes. Consortia consisting of several PGPB were often more effective than individual PGPB in assisting phytoremediation in the presence of metallic and/or organic environmental contaminants.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 2","pages":"415-448"},"PeriodicalIF":2.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and morphological methods for oral biofilm visualization: where are we nowadays? 口腔生物膜可视化的特征和形态学方法:我们现在处于什么阶段?
IF 2.7
AIMS Microbiology Pub Date : 2024-06-06 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024020
Davide Gerardi, Sara Bernardi, Angelo Bruni, Giovanni Falisi, Gianluca Botticelli
{"title":"Characterization and morphological methods for oral biofilm visualization: where are we nowadays?","authors":"Davide Gerardi, Sara Bernardi, Angelo Bruni, Giovanni Falisi, Gianluca Botticelli","doi":"10.3934/microbiol.2024020","DOIUrl":"10.3934/microbiol.2024020","url":null,"abstract":"<p><p>The oral microbiome represents an essential component of the oral ecosystem whose symbiotic relationship contributes to health maintenance. The biofilm represents a state of living of microorganisms surrounding themselves with a complex and tridimensional organized polymeric support and defense matrix. The substrates where the oral biofilm adhere can suffer from damages due to the microbial community metabolisms. Therefore, microbial biofilm represents the main etiological factor of the two pathologies of dental interest with the highest incidence, such as carious pathology and periodontal pathology. The study, analysis, and understanding of the characteristics of the biofilm, starting from the macroscopic structure up to the microscopic architecture, appear essential. This review examined the morphological methods used through the years to identify species, adhesion mechanisms that contribute to biofilm formation and stability, and how the action of microbicidal molecules is effective against pathological biofilm. Microscopy is the primary technique for the morphological characterization of biofilm. Light microscopy, which includes the stereomicroscope and confocal laser microscopy (CLSM), allows the visualization of microbial communities in their natural state, providing valuable information on the spatial arrangement of different microorganisms within the biofilm and revealing microbial diversity in the biofilm matrix. The stereomicroscope provides a three-dimensional view of the sample, allowing detailed observation of the structure, thickness, morphology, and distribution of the various species in the biofilm while CLSM provides information on its three-dimensional architecture, microbial composition, and dynamic development. Electron microscopy, scanning (SEM) or transmission (TEM), allows the high-resolution investigation of the architecture of the biofilm, analyzing the bacterial population, the extracellular polymeric matrix (EPS), and the mechanisms of the physical and chemical forces that contribute to the adhesion of the biofilm to the substrates, on a nanometric scale. More advanced microscopic methodologies, such as scanning transmission electron microscopy (STEM), high-resolution transmission electron microscopy (HR-TEM), and correlative microscopy, have enabled the evaluation of antibacterial treatments, due to the potential to reveal the efficacy of different molecules in breaking down the biofilm. In conclusion, evidence based on scientific literature shows that established microscopic methods represent the most common tools used to characterize biofilm and its morphology in oral microbiology. Further protocols and studies on the application of advanced microscopic techniques are needed to obtain precise details on the microbiological and pathological aspects of oral biofilm.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 2","pages":"391-414"},"PeriodicalIF":2.7,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic and transcriptomic analyses of Cutibacterium acnes biofilms and planktonic cultures in presence of epinephrine. 痤疮杆菌生物膜和浮游培养物在肾上腺素作用下的蛋白质组和转录组分析。
IF 2.7
AIMS Microbiology Pub Date : 2024-05-27 eCollection Date: 2024-01-01 DOI: 10.3934/microbiol.2024019
A V Gannesen, M I Schelkunov, R H Ziganshin, M A Ovcharova, M V Sukhacheva, N E Makarova, S V Mart'yanov, N A Loginova, A M Mosolova, E V Diuvenji, E D Nevolina, V K Plakunov
{"title":"Proteomic and transcriptomic analyses of <i>Cutibacterium acnes</i> biofilms and planktonic cultures in presence of epinephrine.","authors":"A V Gannesen, M I Schelkunov, R H Ziganshin, M A Ovcharova, M V Sukhacheva, N E Makarova, S V Mart'yanov, N A Loginova, A M Mosolova, E V Diuvenji, E D Nevolina, V K Plakunov","doi":"10.3934/microbiol.2024019","DOIUrl":"10.3934/microbiol.2024019","url":null,"abstract":"<p><p>Transcriptomic and proteomic analysis were performed on 72 h biofilms of the acneic strain <i>Cutibacterium acnes</i> and planktonic cultures in the presence of epinephrine. Epinephrine predominantly downregulated genes associated with various transporter proteins. No correlation was found between proteomic and transcriptomic profiles. In control samples, the expression of 51 proteins differed between planktonic cultures and biofilms. Addition of 5 nM epinephrine reduced this number, and in the presence of 5 µM epinephrine, the difference in proteomic profiles between planktonic cultures and biofilms disappeared. According to the proteomic profiling, epinephrine itself was more effective in the case of <i>C. acnes</i> biofilms and potentially affected the tricarboxylic acid cycle (as well as alpha-ketoglutarate decarboxylase Kgd), biotin synthesis, cell division, and transport of different compounds in <i>C. acnes</i> cells. These findings are consistent with recent research on <i>Micrococcus luteus</i>, suggesting that the effects of epinephrine on actinobacteria may be universal.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 2","pages":"363-390"},"PeriodicalIF":2.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信