Advanced Fiber Materials最新文献

筛选
英文 中文
Spacesuit Textiles from Extreme Fabric Materials: Aromatic Amide Polymer and Boron Nitride Nanotube Composite Fiber for Neutron Shielding and Thermal Management 利用极端织物材料制成的宇航服纺织品:用于中子屏蔽和热管理的芳香族酰胺聚合物和氮化硼纳米管复合纤维
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-06-03 DOI: 10.1007/s42765-024-00432-6
Ki-Hyun Ryu, Minsung Kang, Jungwon Kim, Nam-Ho You, Se Gyu Jang, Kwang-Un Jeong, Seokhoon Ahn, Dae-Yoon Kim
{"title":"Spacesuit Textiles from Extreme Fabric Materials: Aromatic Amide Polymer and Boron Nitride Nanotube Composite Fiber for Neutron Shielding and Thermal Management","authors":"Ki-Hyun Ryu,&nbsp;Minsung Kang,&nbsp;Jungwon Kim,&nbsp;Nam-Ho You,&nbsp;Se Gyu Jang,&nbsp;Kwang-Un Jeong,&nbsp;Seokhoon Ahn,&nbsp;Dae-Yoon Kim","doi":"10.1007/s42765-024-00432-6","DOIUrl":"10.1007/s42765-024-00432-6","url":null,"abstract":"<div><p>Space exploration provides unparalleled opportunities for unraveling the mysteries of our origins and exploring planetary systems beyond Earth. Long-distance space missions require successful protection against significant radiation exposure, necessitating the development of effective radiation shielding materials. This study developed aromatic amide polymer (AAP) and boron nitride nanotube (BNNT) composite fibers using lyotropic liquid crystal (LLC) and industrially viable wet-spinning processes. The uniaxially oriented 1D composite fibers provide the necessary continuity and pliability to fabricate 2D macroscopic textiles with low density (1.80 g cm<sup>−3</sup>), mechanical modulus (18.16 GPa), and heat stability (up to 479 °C), while exhibiting the improved thermal neutron absorption cross-section with thermal neutron-shielding performance (0.73 mm<sup>−1</sup>). These composite textiles also show high thermal conductivity (7.88 W m<sup>−1</sup> K<sup>−1</sup>) due to their densely packed and uniaxially oriented structures. These enhanced characteristics render the fibers a highly promising material for space applications, offering robust protection for both astronauts and electronics against the dual threats of radiation and heat.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1509 - 1520"},"PeriodicalIF":17.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Surface Functionalization of Electrospun Elastic Nanofibers Via Initiated Chemical Vapor Deposition for Enhanced Neural Cell Adhesion and Alignment 通过化学气相沉积促进电纺弹性纳米纤维表面功能化,增强神经细胞粘附性和排列性
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-06-03 DOI: 10.1007/s42765-024-00438-0
Yerim Jang, Soonjong Roh, Younghak Cho, Youngmee Jung, Kangwon Lee, Nakwon Choi, Jin Yoo, Hyejeong Seong
{"title":"Facile Surface Functionalization of Electrospun Elastic Nanofibers Via Initiated Chemical Vapor Deposition for Enhanced Neural Cell Adhesion and Alignment","authors":"Yerim Jang,&nbsp;Soonjong Roh,&nbsp;Younghak Cho,&nbsp;Youngmee Jung,&nbsp;Kangwon Lee,&nbsp;Nakwon Choi,&nbsp;Jin Yoo,&nbsp;Hyejeong Seong","doi":"10.1007/s42765-024-00438-0","DOIUrl":"10.1007/s42765-024-00438-0","url":null,"abstract":"<div><p>An advanced approach for functionalizing the surfaces of electrospun poly(l-lactide-co-ε-caprolactone) (PLCL) nanofibers for biomedical applications is presented here. Using initiated chemical vapor deposition (iCVD), a coating of the copolymer p(PFMA-<i>co</i>-DVB) containing poly(pentafluorophenyl methacrylate) (PFMA) and divinylbenzene (DVB) was applied to the PLCL nanofibers. This coating facilitated efficient immobilization of the biomolecules on the PLCL nanofiber surfaces, allowing precise adjustments to the polymer composition through modulation of the monomer flow rates. The resulting copolymer exhibited superior efficiency for immobilizing IgG, as confirmed by immunofluorescence intensity analysis. In vitro studies conducted with different neural cell types demonstrated that the laminin-coated iCVD-functionalized PLCL nanofibers maintained their inherent biocompatibility while significantly enhancing cell adhesion. By exploiting the elastic nature of the PLCL nanofibers, cell elongation could be successfully manipulated by controlling the nanofiber alignment, as demonstrated by scanning electron microscopy and quantification of the immunofluorescence image orientation. These findings highlight the potential of iCVD-modified PLCL nanofibers as versatile platforms for neural tissue engineering and various biomedical applications, allowing valuable biomaterial surface modifications for enhanced cellular interactions.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1583 - 1595"},"PeriodicalIF":17.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical Structured Fabrics with Enhanced Pressure Sensing Performance Based on Orientated Growth of Functional Bacterial Cellulose 基于功能性细菌纤维素定向生长的具有增强压力传感性能的分层结构织物
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-06-03 DOI: 10.1007/s42765-024-00435-3
Chong Gao, Yingcun Liu, Zongxue Gu, Juan Li, Yue Sun, Wei Li, Keshuai Liu, Duo Xu, Bin Yu, Weilin Xu
{"title":"Hierarchical Structured Fabrics with Enhanced Pressure Sensing Performance Based on Orientated Growth of Functional Bacterial Cellulose","authors":"Chong Gao,&nbsp;Yingcun Liu,&nbsp;Zongxue Gu,&nbsp;Juan Li,&nbsp;Yue Sun,&nbsp;Wei Li,&nbsp;Keshuai Liu,&nbsp;Duo Xu,&nbsp;Bin Yu,&nbsp;Weilin Xu","doi":"10.1007/s42765-024-00435-3","DOIUrl":"10.1007/s42765-024-00435-3","url":null,"abstract":"<div><p>Wearable electronics based on natural biomaterials, such as bacterial cellulose (BC), have shown promise for a variety of healthcare and human-computer interaction applications. However, current BC-based pressure sensors have an inherent limitation, which is the two-dimensional rigid structures and limited compressibility of BC restrict the sensitivity and working range for pressure sensing. Here, we propose a strategy for fabricating BC/polypyrrole/spacer fabric (BPSF) pressure sensors with a hierarchical structure constructed by integrating conductive BC nanonetwork into a compressible fabric frame via the in situ biofermentation process. The hierarchical structure design includes a cross-scale network from the nanoscale BC sensor networks to the macroscopic three-dimensional compressible fabric sensor network, which significantly improves the working range (0–300 kPa) and sensitivity (40.62 kPa<sup>−1</sup>) of BPSF. Via this unique structural design, the sensor also achieves a high fatigue life (~5000 cycles), wearability, and reproducibility even after several washing and abrasion cycles. Furthermore, a flexible and wearable electronic textile featuring an<i> n</i> ×<i> n</i> sensing matrix was developed by constructing BPSF arrays, allowing for the precise control of machines and weight distribution analysis. These empirical insights are valuable for the biofabrication and textile structure design of wearable devices toward the realization of highly intuitive human-machine interfaces.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1554 - 1568"},"PeriodicalIF":17.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: On-Site Electrospinning Nanofiber Membranes Incorporating V-Shaped Organic Semiconductors for Multifunctional Diabetic Wound Dressing 更正:用于多功能糖尿病伤口敷料的含有 V 形有机半导体的现场电纺丝纳米纤维膜
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-06-03 DOI: 10.1007/s42765-024-00436-2
Ling Hong, Pu Qiu, Shining Niu, Qian Chen, Xiuqin Lu, Fengkun Chen, Mei Wen, Nuo Yu, Zhigang Chen
{"title":"Correction: On-Site Electrospinning Nanofiber Membranes Incorporating V-Shaped Organic Semiconductors for Multifunctional Diabetic Wound Dressing","authors":"Ling Hong,&nbsp;Pu Qiu,&nbsp;Shining Niu,&nbsp;Qian Chen,&nbsp;Xiuqin Lu,&nbsp;Fengkun Chen,&nbsp;Mei Wen,&nbsp;Nuo Yu,&nbsp;Zhigang Chen","doi":"10.1007/s42765-024-00436-2","DOIUrl":"10.1007/s42765-024-00436-2","url":null,"abstract":"","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 6","pages":"1993 - 1994"},"PeriodicalIF":17.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Sensitive and Mechanically Stable MXene Textile Sensors for Adaptive Smart Data Glove Embedded with Near-Sensor Edge Intelligence 用于嵌入近传感器边缘智能的自适应智能数据手套的高灵敏度和机械稳定性 MXene 纺织品传感器
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-05-28 DOI: 10.1007/s42765-024-00434-4
Shengshun Duan, Yucheng Lin, Qiongfeng Shi, Xiao Wei, Di Zhu, Jianlong Hong, Shengxin Xiang, Wei Yuan, Guozhen Shen, Jun Wu
{"title":"Highly Sensitive and Mechanically Stable MXene Textile Sensors for Adaptive Smart Data Glove Embedded with Near-Sensor Edge Intelligence","authors":"Shengshun Duan,&nbsp;Yucheng Lin,&nbsp;Qiongfeng Shi,&nbsp;Xiao Wei,&nbsp;Di Zhu,&nbsp;Jianlong Hong,&nbsp;Shengxin Xiang,&nbsp;Wei Yuan,&nbsp;Guozhen Shen,&nbsp;Jun Wu","doi":"10.1007/s42765-024-00434-4","DOIUrl":"10.1007/s42765-024-00434-4","url":null,"abstract":"<div><p>Smart data gloves capable of monitoring finger activities and inferring hand gestures are of significance to human–machine interfaces, robotics, healthcare, and Metaverse. Yet, most current smart data gloves present unstable mechanical contacts, limited sensitivity, as well as offline training and updating of machine learning models, leading to uncomfortable wear and suboptimal performance during practical applications. Herein, highly sensitive and mechanically stable textile sensors are developed through the construction of loose MXene-modified textile interface structures and a thermal transfer printing method with the melting-infiltration-solidification adhesion procedure. Then, a smart data glove with adaptive gesture recognition is reported, based on the integration of 10-channel MXene textile bending sensors and a near-sensor adaptive machine learning model. The near-sensor adaptive machine learning model achieves a 99.5% accuracy using the proposed post-processing algorithm for 14 gestures. Also, the model features the ability to locally update model parameters when gesture types change, without additional computation on any external device. A high accuracy of 98.1% is still preserved when further expanding the dataset to 20 gestures, where the accuracy is recovered by 27.6% after implementing the model updates locally. Lastly, an auto-recognition and control system for wireless robotic sorting operations with locally trained hand gestures is demonstrated, showing the great potential of the smart data glove in robotics and human–machine interactions.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1541 - 1553"},"PeriodicalIF":17.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immobilization of a Metal–Organic Framework on a Nanofiber Membrane as Artificial Platelets for Efficient Hemostasis 将金属有机框架固定在纳米纤维膜上作为人造血小板用于高效止血
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-05-22 DOI: 10.1007/s42765-024-00424-6
Binglin Bie, Zhanglong Zhu, Yonggang Lv
{"title":"Immobilization of a Metal–Organic Framework on a Nanofiber Membrane as Artificial Platelets for Efficient Hemostasis","authors":"Binglin Bie,&nbsp;Zhanglong Zhu,&nbsp;Yonggang Lv","doi":"10.1007/s42765-024-00424-6","DOIUrl":"10.1007/s42765-024-00424-6","url":null,"abstract":"<div><p>Medical hemostatic gauze is one of the most common agents for bleeding management used in pre-hospital care and clinical treatment. An ideal hemostat requires the features including fast coagulation ability, high biocompatibility and low cost, which is difficult to be achieved simultaneously. Herein, we reported a chemical immobilization method to uniformly anchor the zeolitic imidazolate framework (ZIF-8) nanoparticles on polyvinyl alcohol (PVA) membrane, which dramatically accelerated the in vivo conversion process of prothrombin to thrombin, achieving a short hemostasis time around 60 s with a low amount of blood loss of 23 mg. Later, the hemostatic mechanism was unveiled by two pathways involving the activation of platelets and the conversion of prothrombin, indicating that this ZIF-8-based membrane works in a similar way to natural platelet-based physiological processes. More importantly, the convenient manufacturing and excellent biocompatibility of ZIF-8-based membrane provide a practical candidate hemostat for clinical bleeding management.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div><div><p>The chemical immobilization of ZIF-8 enables a tight combination between ZIF-8 particles and PVA fibers, which provides uniform distribution and dramatically enhances the stability in aqueous environment. This hemestasis gauze has been proven to play a role as an artificial platelet to promote the conversion of prothrombin into thrombin with 2-fold higher effiency than that of the common physiological process accompanied by a 10-fold activation rate for the activation of natural platelets</p></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1456 - 1469"},"PeriodicalIF":17.2,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141110190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Trimode Self-Cleaning Composite Membrane with an Eco-friendly Substrate for Energy-Saving Wastewater Recycling 用于节能型废水回收的具有生态友好基质的 Trimode 自清洁复合膜
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-05-22 DOI: 10.1007/s42765-024-00430-8
Yuelin Yu, Yongtao Yu, Hongyi Wu, Jian Shi, Hideaki Morikawa, Chunhong Zhu
{"title":"A Trimode Self-Cleaning Composite Membrane with an Eco-friendly Substrate for Energy-Saving Wastewater Recycling","authors":"Yuelin Yu,&nbsp;Yongtao Yu,&nbsp;Hongyi Wu,&nbsp;Jian Shi,&nbsp;Hideaki Morikawa,&nbsp;Chunhong Zhu","doi":"10.1007/s42765-024-00430-8","DOIUrl":"10.1007/s42765-024-00430-8","url":null,"abstract":"<div><p>A separation membrane with low or clean energy costs is urgently required for energy-saving and long-term service since electric energy generated from burning non-renewable resources will gradually cause a burden to the environment. At present, the conventional membrane being used in one mode is critical for a variety of scenarios in real life, which suffers from a trade-off effect, short service life, being difficult to recycle after damage. Herein, we report a trimode purification membrane composed of an eco-friendly polycaprolactone (PCL) substrate and functional graphene dioxide/polyaniline (GO/PANI) particles. Due to the photothermal transfer and photocatalytic properties of GO/PANI blend, the composite membrane can absorb 97.44% solar energy to handle natural seawater or mixed wastewater, which achieves a high evaporation rate of 1.47 kg m<sup>−2</sup> h<sup>−1</sup> in solar-driven evaporation mode. For the photocatalytic adsorption–degradation mode, 93.22% of organic dyes can be adsorbed and degraded after 12 h irradiation under 1 kW m<sup>−2</sup>. Moreover, electric-driven cross-flow filtration mode as a supplement also shows effective rejection over 99% for organic dyes with a high flux over 40 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>. The combination of solar-driven evaporation, photocatalytic adsorption–degradation, and electric-driven cross-flow filtration demonstrates a prospective and sustainable strategy to generating clean water from sewages.</p><h3>Graphical Abstract</h3><p>A trimode self-cleaning composite membrane of bio-degradable substrate PCL and functional particles GO/PANI were successfully fabricated, which can purify natural seawater or mixed wastewater stably in solar-driven evaporation mode, handle organic dyes by reduction–oxidation chemical transformation in photothermal adsorption–degradation mode, and be applied in cross-flow filtration mode driven by electric as a supplement for rainy, cloudy days, or at night.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1495 - 1508"},"PeriodicalIF":17.2,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42765-024-00430-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141109210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional Nanofibrous Membranes for Integrated Air Purification 用于综合空气净化的多功能纳米纤维膜
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-05-22 DOI: 10.1007/s42765-024-00427-3
Yutang Kang, Ze-Xian Low, Dong Zou, Zhaoxiang Zhong, Weihong Xing
{"title":"Multifunctional Nanofibrous Membranes for Integrated Air Purification","authors":"Yutang Kang,&nbsp;Ze-Xian Low,&nbsp;Dong Zou,&nbsp;Zhaoxiang Zhong,&nbsp;Weihong Xing","doi":"10.1007/s42765-024-00427-3","DOIUrl":"10.1007/s42765-024-00427-3","url":null,"abstract":"<div><p>Air pollutants, which are composed of diverse components such as particulate matter (PM), volatile organic compounds (VOCs), nitrogen oxides (NO<sub><i>x</i></sub>), sulfur dioxide (SO<sub>2</sub>), and pathogenic microorganisms, have adverse effects on both the ecosystem and human health. While existing air purification technologies can effectively eliminate these pollutants through multiple processes targeting specific components, they often entail high energy consumption, maintenance costs, and complexity. Recent developments in air purification technology based on multifunctional nanofibrous membranes present a promising single-step solution for the effective removal of diverse air pollutants. Through synergistic integration with functional materials, other functional materials, such as those with catalytic, adsorption, and antimicrobial properties, can be incorporated into nanofibrous membranes. In this review, the design concepts and fabrication strategies of multifunctional nanofibrous membranes to facilitate the integrated removal of multiple air pollutants are explored. Additionally, nanofibrous membrane preparation methods, PM removal mechanisms, and performance metrics are introduced. Next, methods for removing various air pollutants are outlined, and different air purification materials are reviewed. Finally, the design approaches and the state-of-the-art of multifunctional nanofibrous membranes for integrated air purification are highlighted.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1306 - 1342"},"PeriodicalIF":17.2,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Transparent and Flexible All-Nanofiber-Based Piezocomposite Containing BaTiO3-Embedded P(VDF-TrFE) Nanofibers for Harvesting and Monitoring Human Kinetic Movements 基于全纳米纤维的高透明柔性压电复合材料,其中含有嵌入式 P(VDF-TrFE)纳米纤维,可用于采集和监测人体运动
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-05-17 DOI: 10.1007/s42765-024-00406-8
Kiyong Kim, Daekyu Choi, Sangmin Ji, Freddy Baltazar Iniguez, Young Jae Song, Sam S. Yoon, Junki Kim, Seongpil An
{"title":"Highly Transparent and Flexible All-Nanofiber-Based Piezocomposite Containing BaTiO3-Embedded P(VDF-TrFE) Nanofibers for Harvesting and Monitoring Human Kinetic Movements","authors":"Kiyong Kim,&nbsp;Daekyu Choi,&nbsp;Sangmin Ji,&nbsp;Freddy Baltazar Iniguez,&nbsp;Young Jae Song,&nbsp;Sam S. Yoon,&nbsp;Junki Kim,&nbsp;Seongpil An","doi":"10.1007/s42765-024-00406-8","DOIUrl":"10.1007/s42765-024-00406-8","url":null,"abstract":"<div><p>We developed kinetic energy-harvestable and kinetic movement-detectable piezoelectric nanogenerators (PENGs) consisting of piezoelectric nanofiber (NF) mats and metal-electroplated microfiber (MF) electrodes using electrospinning and electroplating methods. Percolative non-woven structure and high flexibility of the NF mats and MF electrodes allowed us to achieve highly transparent and flexible piezocomposites. A viscoelastic solution, mixed with P(VDF-TrFE) and BaTiO<sub>3</sub>, was electrospun into piezoelectric NFs with a piezoelectric coefficient <i>d</i><sub>33</sub> of 21.2 pC/N. In addition, the combination of electrospinning and electroplating techniques enabled the fabrication of Ni-plated MF-based transparent conductive electrodes (TCEs), contributing to the high transparency of the resulting piezocomposite. The energy-harvesting efficiencies of the BaTiO<sub>3</sub>-embedded NF-based PENGs with transmittances of 86% and 80% were 200 and 240 V/MPa, respectively, marking the highest values in their class. Moreover, the output voltage driven by the coupling effect of piezoelectricity and triboelectricity during finger tapping was 25.7 V. These highly efficient energy-harvesting performances, along with the transparent and flexible features of the PENGs, hold great promise for body-attachable energy-harvesting and sensing devices, as demonstrated in this study.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1369 - 1386"},"PeriodicalIF":17.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent Textiles for Visual and Smart Interaction 用于视觉和智能交互的智能纺织品
IF 17.2 1区 工程技术
Advanced Fiber Materials Pub Date : 2024-05-17 DOI: 10.1007/s42765-024-00431-7
Yuanyuan Zheng, Zhigang Chen, Huisheng Peng
{"title":"Intelligent Textiles for Visual and Smart Interaction","authors":"Yuanyuan Zheng,&nbsp;Zhigang Chen,&nbsp;Huisheng Peng","doi":"10.1007/s42765-024-00431-7","DOIUrl":"10.1007/s42765-024-00431-7","url":null,"abstract":"<div><p>The fiberization and integration of electronic devices into textiles represent an important strategy to design wearable and comfortable intelligent systems. However, the function realization of existing intelligent textiles often depends on complex and rigid silicon-based computation components, which have posed significant challenges in terms of integration, energy consumption and user comfort. This has spurred the need for a paradigm shift towards more seamless and efficient solutions. The advent of chipless interactive textile electronics presents a promising pathway for overcoming these challenges and unlocking new possibilities in wearable technology.</p></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"946 - 948"},"PeriodicalIF":17.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信