{"title":"Piezoelectric Polyvinylidene Fluoride-Trifluoroethylene/Reduced Graphene Oxide/Polycaprolactone Fiber Material: Modulating Neutrophil Extracellular Traps and Reshaping the Immune Microenvironment in Peripheral Nerves","authors":"Yaowei Lv, Lei Zhan, Xiangyun Yao, Jinye Shi, Xiangyang Wang, Hede Yan, Xu Wang, Chen Huang, Yun Qian, Yuanming Ouyang","doi":"10.1007/s42765-025-00516-x","DOIUrl":null,"url":null,"abstract":"<div><p>After peripheral nerve injury, disruption of immune homeostasis retards the repair process of peripheral nerves. Piezoelectric materials are the latest paradigm used to address the electrical and energy deficiencies of peripheral nerves. However, the effects and mechanism by which piezoelectric materials regulate immune homeostasis and promote peripheral nerve regeneration remain unclear. We developed a self-powered nerve-bridging scaffold by adding polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and reduced graphene oxide (rGO) nanoparticles to a polycaprolactone (PCL) substrate. This electrical stimulation reduces high levels of inflammatory cytokines in damaged nerve tissue, controls abnormal neutrophil activity, and promotes quick revascularization. By providing energy, immune balance, and angiogenesis, this electroactive scaffold significantly enhances peripheral nerve regeneration. The recovery of the disintegrated myelin sheath was comparable to that observed after autologous nerve transplantation, and neuromuscular function was significantly restored after implantation of the self-generating electrical stimulation material. This multifunctional fibrous material has promise for clinical translation for the treatment of peripheral nerve injuries.</p></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 2","pages":"645 - 663"},"PeriodicalIF":17.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00516-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
After peripheral nerve injury, disruption of immune homeostasis retards the repair process of peripheral nerves. Piezoelectric materials are the latest paradigm used to address the electrical and energy deficiencies of peripheral nerves. However, the effects and mechanism by which piezoelectric materials regulate immune homeostasis and promote peripheral nerve regeneration remain unclear. We developed a self-powered nerve-bridging scaffold by adding polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and reduced graphene oxide (rGO) nanoparticles to a polycaprolactone (PCL) substrate. This electrical stimulation reduces high levels of inflammatory cytokines in damaged nerve tissue, controls abnormal neutrophil activity, and promotes quick revascularization. By providing energy, immune balance, and angiogenesis, this electroactive scaffold significantly enhances peripheral nerve regeneration. The recovery of the disintegrated myelin sheath was comparable to that observed after autologous nerve transplantation, and neuromuscular function was significantly restored after implantation of the self-generating electrical stimulation material. This multifunctional fibrous material has promise for clinical translation for the treatment of peripheral nerve injuries.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.