Yongkang Jin, Feng Xiong, Mulin Qin, Haiwei Han, Shenghui Han, Hsing Kai Chu, Kaihang Jia, Song Gao, Zhenghui Shen, Ruqiang Zou
{"title":"超弹性聚酰亚胺杂化纳米纤维气凝胶的模板锚定组装","authors":"Yongkang Jin, Feng Xiong, Mulin Qin, Haiwei Han, Shenghui Han, Hsing Kai Chu, Kaihang Jia, Song Gao, Zhenghui Shen, Ruqiang Zou","doi":"10.1007/s42765-025-00521-0","DOIUrl":null,"url":null,"abstract":"<div><p>Developing high-performance aerogels has long been a hot topic in the fields of insulation and thermal protection. Nanofiber aerogels with ultralight weight and high porosity have recently emerged as promising candidates. However, the weak inter-fiber interaction hampers the robustness of the three-dimensional network, resulting in poor overall mechanical properties that hinder their wide adoption. Herein, we propose a novel template-anchored strategy for constructing polyimide hybrid nanofiber aerogels. By utilizing self-supporting chitosan as a sacrificial template, polyimide (PI) nanofibers are directionally interconnected by chemical pre-anchoring and heat treatment, which endows the three-dimensional fiber network with good structural stability. These directly assembled nanofiber aerogels exhibit an adjustable low-density range (12.3–31.5 mg/cm<sup>3</sup>), excellent compressive resilience and fatigue resistance (with only 7.2% permanent deformation after 100 cycles at 60% strain), demonstrating good shape recovery. Moreover, the complex nanofiber pathway and porous network structure contribute to superior thermal insulation performance with low thermal conductivity (28.5–31.8 mW m<sup>−1</sup> K<sup>−1</sup>). Furthermore, the incorporation of polyimide and silica (SiO<sub>2</sub>) imparts these hybrid aerogels with remarkable high-temperature resistance and flame retardancy. This study introduces and validates a novel approach for obtaining superelastic and lightweight aerogels, highlighting its promising potential in the realm of high-temperature thermal insulation.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 3","pages":"799 - 810"},"PeriodicalIF":21.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Template-Anchored Assembly of Superelastic Polyimide Hybrid Nanofiber Aerogel for Thermal Insulation\",\"authors\":\"Yongkang Jin, Feng Xiong, Mulin Qin, Haiwei Han, Shenghui Han, Hsing Kai Chu, Kaihang Jia, Song Gao, Zhenghui Shen, Ruqiang Zou\",\"doi\":\"10.1007/s42765-025-00521-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing high-performance aerogels has long been a hot topic in the fields of insulation and thermal protection. Nanofiber aerogels with ultralight weight and high porosity have recently emerged as promising candidates. However, the weak inter-fiber interaction hampers the robustness of the three-dimensional network, resulting in poor overall mechanical properties that hinder their wide adoption. Herein, we propose a novel template-anchored strategy for constructing polyimide hybrid nanofiber aerogels. By utilizing self-supporting chitosan as a sacrificial template, polyimide (PI) nanofibers are directionally interconnected by chemical pre-anchoring and heat treatment, which endows the three-dimensional fiber network with good structural stability. These directly assembled nanofiber aerogels exhibit an adjustable low-density range (12.3–31.5 mg/cm<sup>3</sup>), excellent compressive resilience and fatigue resistance (with only 7.2% permanent deformation after 100 cycles at 60% strain), demonstrating good shape recovery. Moreover, the complex nanofiber pathway and porous network structure contribute to superior thermal insulation performance with low thermal conductivity (28.5–31.8 mW m<sup>−1</sup> K<sup>−1</sup>). Furthermore, the incorporation of polyimide and silica (SiO<sub>2</sub>) imparts these hybrid aerogels with remarkable high-temperature resistance and flame retardancy. This study introduces and validates a novel approach for obtaining superelastic and lightweight aerogels, highlighting its promising potential in the realm of high-temperature thermal insulation.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 3\",\"pages\":\"799 - 810\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-025-00521-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00521-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Template-Anchored Assembly of Superelastic Polyimide Hybrid Nanofiber Aerogel for Thermal Insulation
Developing high-performance aerogels has long been a hot topic in the fields of insulation and thermal protection. Nanofiber aerogels with ultralight weight and high porosity have recently emerged as promising candidates. However, the weak inter-fiber interaction hampers the robustness of the three-dimensional network, resulting in poor overall mechanical properties that hinder their wide adoption. Herein, we propose a novel template-anchored strategy for constructing polyimide hybrid nanofiber aerogels. By utilizing self-supporting chitosan as a sacrificial template, polyimide (PI) nanofibers are directionally interconnected by chemical pre-anchoring and heat treatment, which endows the three-dimensional fiber network with good structural stability. These directly assembled nanofiber aerogels exhibit an adjustable low-density range (12.3–31.5 mg/cm3), excellent compressive resilience and fatigue resistance (with only 7.2% permanent deformation after 100 cycles at 60% strain), demonstrating good shape recovery. Moreover, the complex nanofiber pathway and porous network structure contribute to superior thermal insulation performance with low thermal conductivity (28.5–31.8 mW m−1 K−1). Furthermore, the incorporation of polyimide and silica (SiO2) imparts these hybrid aerogels with remarkable high-temperature resistance and flame retardancy. This study introduces and validates a novel approach for obtaining superelastic and lightweight aerogels, highlighting its promising potential in the realm of high-temperature thermal insulation.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.