{"title":"Dynamics of a Spherical Cavity in a Cavitating Liquid with a Continuously Changing Concentration of Cavitation Nuclei","authors":"V. K. Kedrinsky, A. A. Cherevko","doi":"10.1134/S1063771024602401","DOIUrl":"10.1134/S1063771024602401","url":null,"abstract":"<p>The study derives an equation and solves for the first time the problem on the formation and radiation dynamics of a quasi-empty pulsating spherical cavity in a cavitating liquid under the influence of variable sound velocity in a cavitation and cavitation nuclei concentration zone. The data on the cavity dynamics, radiation, and collapsing velocity for a spectrum of initial internal pressures show that, at a maximum gas phase concentration, pulsations are different in the degree of their compression. They have almost identical character: after the first collapse, only a single half-cycle is completed to attain different constant equilibrium radii. The condition of equality between the pressures in a cavitation zone and inside a spherical cavity at its boundary makes it possible to establish a dynamic relation between the volumetric concentration (sound speed) in the cavitation zone and the radius of this spherical cavity for the first time. When calculating and constructing the solution, the condition that the initial cavity size takes a value corresponding to the initial pressure is changed. The dependences of radiation amplitudes over the entire range of applied pressures are plotted. It turns out that the radiation amplitude increases by five orders of magnitude, when the initial pressure inside a cavity changes by three orders of magnitude from 10<sup>–2</sup> to 10<sup>–5</sup> atm.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 4","pages":"626 - 634"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Average Field Intensity and Individual Modes of a Low-Frequency Sound Signal in a Shallow Waveguide with a Statistically Rough Bottom Boundary","authors":"O. E. Gulin, I. O. Yaroshchuk, R. A. Korotchenko","doi":"10.1134/S1063771024602437","DOIUrl":"10.1134/S1063771024602437","url":null,"abstract":"<div><p>For a low-frequency sound signal propagating in a horizontally inhomogeneous waveguide in shallow water, the influence of a fluctuating interface between the water layer and fluid bottom sediments was studied based on statistical modeling using the cross-sectional method. The modeling was carried out for hydrological conditions in many situations corresponding to the shallow shelf zones of the Russian Arctic seas. A specific feature of these water areas is the presence of an almost homogeneous water layer on poorly consolidated bottom sediments with various characteristics, including a high degree of gas saturation. The dependence of the average intensity of the sound signal and its individual modes on the parameters of the problem has been studied: the characteristic scale of fluctuations of the interface and impedance of this interface, which determines its penetrable properties. It is shown that the influence of bathymetric fluctuations on the average intensity of acoustic modes has its own characteristics versus the influence of random volumetric inhomogeneities of the sound speed in the water layer and sediments, established earlier. Thus, bottom roughness of a relatively small scale leads, on average, to increased attenuation of a sound signal when propagating in a waveguide, and this can occur at relatively short distances from the source. An increase in the reflectivity of a rough bottom boundary weakens the effect of increased sound attenuation so that for typical values of sound speed in the bottom, attenuation at distances of 10–20 km from the source differs little from that for an undisturbed horizontal boundary.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 4","pages":"641 - 658"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. A. Agafonov, M. Yu. Izosimova, R. A. Zhostkov, A. I. Kokshayskiy, A. I. Korobov, N. I. Odina
{"title":"Effect of Geometry on Flexural Wave Propagation in a Notched Bar","authors":"A. A. Agafonov, M. Yu. Izosimova, R. A. Zhostkov, A. I. Kokshayskiy, A. I. Korobov, N. I. Odina","doi":"10.1134/S1063771024602000","DOIUrl":"10.1134/S1063771024602000","url":null,"abstract":"<p>The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 4","pages":"593 - 601"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atomic Sodium Sonoluminescence Features during Bubble Collapse in a Cavitation Cloud by Time-Correlated Single Photon Counting","authors":"M. V. Kazachek, T. V. Gordeychuk","doi":"10.1134/S1063771024601778","DOIUrl":"10.1134/S1063771024601778","url":null,"abstract":"<p>The pulse width of multibubble sonoluminescence flashes in an aqueous NaCl solution was measured by a correlation method for the spectral range of 300–800 nm. The flash pulse width had a maximum value of 21 ns in the spectral region adjacent immediately to the Na <i>D</i>-line peak (589 nm) and decreased to 2 ns with distance from the line peak. The measured dependence of the flash pulse width on the wavelength agreed with the dynamic Na line shape model proposed by us earlier, where the spectral line width and shift were governed by a fast change in the emitting medium density during bubble collapse. Using the correlation method, the sequence of metal and continuum flashes was determined to measure the relative delay between them. The results showed that Na emission takes a longer time as compared to continuum emission and occurred almost symmetrically in time around a continuum flash with a vanishingly small delay of 0.21 ns after the continuum flash. Using the same method for a CeCl<sub>3</sub> solution, a cerium line flash (350 nm) was revealed to occur after a continuum flash with a delay of 31 ns close to the Ce emission lifetime of 33 ns to be indicative of essential distinction between the mechanisms of Na and Ce emission under multibubble sonoluminescence.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 4","pages":"619 - 625"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modification of Dean’s Method for Determining Impedance with an Inhomogeneous Sound Field in a Resonator","authors":"V. V. Palchikovskiy","doi":"10.1134/S1063771024601869","DOIUrl":"10.1134/S1063771024601869","url":null,"abstract":"<div><p>A modification of Dean’s method is proposed for determining the impedance in the case of a nonuniform sound field on the front and bottom surfaces of a resonator. Instead of acoustic pressures in Dean’s formula, the modification uses the coefficients of eigenfunctions, which correspond to a uniform acoustic pressure distribution on the front and bottom surfaces of the resonator. The eigenproblem is solved by the finite element method; the coefficients of the eigenfunctions are found by the least squares method. At the current stage of research, the full-scale experiment has been replaced by numerical simulation in a linear formulation of sound propagation in an impedance tube with normal wave incidence with a honeycomb resonator attached to it. The inhomogeneity of the pressure field over the cross section of the resonator is created from the different positions of holes in the resonator face plate. The study is done for a different number of acoustic pressure measurement points at the bottom of the resonator. Calculations show that the proposed method is efficient and provides good agreement with the straight method for determining impedance. However, the possibilities of using modification of Dean’s method in full-scale measurements are limited, because accurate resonator impedance determination requires a large number of measurement points.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 4","pages":"733 - 744"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. A. Agafonov, M. Yu. Izosimova, R. A. Zhostkov, A. I. Kokshayskiy, A. I. Korobov, N. I. Odina
{"title":"Peculiarities of Flexural Wave Propagation in a Notched Bar","authors":"A. A. Agafonov, M. Yu. Izosimova, R. A. Zhostkov, A. I. Kokshayskiy, A. I. Korobov, N. I. Odina","doi":"10.1134/S1063771024601997","DOIUrl":"10.1134/S1063771024601997","url":null,"abstract":"<p>We present the results of numerical simulation and experimental studies of the propagation of fle-xural elastic waves in a notched metal bar with a rectangular cross section that approximates the acoustic black hole effect. The sample is a notched bar; the depth of notches increases according to a power law with an exponent of 4/3. The experimental results and the results of numerical simulation confirm that such bars slow the propagation velocity of an elastic wave towards the end of the bar. It is demonstrated that flexural waves in such structures exhibit dispersion and their amplitude at the end of the bar for some eigenfrequencies is higher than that in a solid bar. The eigenmode shapes of a solid and notched bar are compared together with the distribution of the flexural wave amplitude along the bars. The frequency dependence of the flexural wave length is studied during wave propagation towards the end of the notched bar.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 3","pages":"409 - 415"},"PeriodicalIF":0.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. A. Yudin, V. F. Kopiev, S. A. Chernyshev, G. A. Faranosov, M. A. Demyanov, O. P. Bychkov
{"title":"On the Evolution of a System of Shock Waves Created by Engine Fan Blades","authors":"M. A. Yudin, V. F. Kopiev, S. A. Chernyshev, G. A. Faranosov, M. A. Demyanov, O. P. Bychkov","doi":"10.1134/S1063771024601985","DOIUrl":"10.1134/S1063771024601985","url":null,"abstract":"<div><p>One source of modern aircraft engine noise is the fan, which is especially noticeable during takeoff at high angular rotation speeds. In such modes, supersonic flow around the fan blades occurs, which leads to the formation of shock waves that propagate upstream until they exit the engine duct. As a result, specific noise is emitted into the front hemisphere, consisting of a number of harmonics that are multiples of the fan rotation frequency. The paper analyzes this effect using a simple model of the propagation of a system of shock waves. An energy approach is used to demonstrate that a system of shock waves with shocks of equal amplitude attenuates the most rapidly.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 3","pages":"444 - 452"},"PeriodicalIF":0.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recognition of the Psychoneurological State of Children with Autism Spectrum Disorders Based on Speech Signals: Acoustic and Perceptual Characteristics","authors":"A. S. Nikolaev","doi":"10.1134/S1063771024602085","DOIUrl":"10.1134/S1063771024602085","url":null,"abstract":"<div><p>Recognition by adults of the psychoneurological state of children with autism spectrum disorders (ASD), <i>n</i> = 35, and typically developing (TD) children, <i>n</i> = 47, aged 5–14 years, was studied. A perceptual analysis was carried out, in which adult native Russian speakers (auditors) took part, <i>n</i> = 206. For perceptual analysis, test sequences (audio tests) were created containing words and phrases of children with ASD and TD children, selected from spontaneous speech recordings. The auditors were faced with the problem of determining the psychoneurological state of a child based on auditory perception: typical–atypical development. A spectrographic analysis of the speech material of children with ASD and TD children was carried out. The phrases of children with ASD are characterized by a lower speech rate compared to the phrases of TD children, as well as fewer words, longer duration of stressed and unstressed vowels in words, higher values of the frequency of the fundamental tone in the phrase, word, and stressed and unstressed vowels.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 3","pages":"586 - 591"},"PeriodicalIF":0.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. A. Pestova, P. V. Yuldashev, V. A. Khokhlova, M. M. Karzova
{"title":"Thermal Ablation of Biological Tissue by Sonicating Discrete Foci in a Specified Volume with a Single Wave Burst with Shocks","authors":"P. A. Pestova, P. V. Yuldashev, V. A. Khokhlova, M. M. Karzova","doi":"10.1134/S1063771024601663","DOIUrl":"10.1134/S1063771024601663","url":null,"abstract":"<div><p>New protocols have been developed of biological tissue volumes with shock-wave bursts using trajectories uniformly filled with discrete foci within a given volume. Each focus was sonicated with a millisecond-long pulse, which immediately generated a single thermal lesion. In developing the most advantageous irradiation protocols, the effect of the source peak power at a constant time-averaged value, the distance between single foci, and geometry of the outer contour of the trajectory on the shape, volume, and thermal ablation rate was analyzed. It is shown that for an arbitrary geometry of the outer contour of a single-layer trajectory, the most advantageous is the saturation mode of the shock front amplitude at the array focus using a trajectory with a spatial step 1.5 times greater than the transverse size of the single lesion. To obtain thermal ablation volumes on the order of cubic centimeters, protocols have been suggested with layer-by-layer irradiation of tissue, which make it possible to accelerate the thermal ablation process by 2.5 times compared to protocols used in clinical practice. The advantage of the proposed protocols that use the shock-wave exposure is the ability to generate localized and predictable thermal lesion without using MRI temperature monitoring.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 3","pages":"434 - 443"},"PeriodicalIF":0.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. P. Bychkov, I. Yu. Mironyuk, I. A. Solntsev, G. A. Faranosov, M. A. Yudin
{"title":"Analysis of Aeroacoustic Characteristics of a Supersonic Jet at Designed Conditions Based on Numerical Simulation Data","authors":"O. P. Bychkov, I. Yu. Mironyuk, I. A. Solntsev, G. A. Faranosov, M. A. Yudin","doi":"10.1134/S1063771023601474","DOIUrl":"10.1134/S1063771023601474","url":null,"abstract":"<div><p>Numerical simulation of the aeroacoustic characteristics of a supersonic jet issuing from a Laval nozzle into space at rest at the design condition (Mach number M = 2) was carried out. The results of calculations using the large eddy simulation (LES) method are presented. The mean and fluctuation characteristics of the flow in the jet, as well as the characteristics of the jet noise in the far field, including its azimuthal composition, were obtained. The calculation results are compared with experimental data, and their satisfactory agreement is shown. It is concluded that there are various mechanisms of noise generation in the considered jet.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 3","pages":"527 - 537"},"PeriodicalIF":0.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}