A. A. Agafonov, M. Yu. Izosimova, R. A. Zhostkov, A. I. Kokshayskiy, A. I. Korobov, N. I. Odina
{"title":"几何形状对凹槽棒中挠性波传播的影响","authors":"A. A. Agafonov, M. Yu. Izosimova, R. A. Zhostkov, A. I. Kokshayskiy, A. I. Korobov, N. I. Odina","doi":"10.1134/S1063771024602000","DOIUrl":null,"url":null,"abstract":"<p>The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 4","pages":"593 - 601"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Geometry on Flexural Wave Propagation in a Notched Bar\",\"authors\":\"A. A. Agafonov, M. Yu. Izosimova, R. A. Zhostkov, A. I. Kokshayskiy, A. I. Korobov, N. I. Odina\",\"doi\":\"10.1134/S1063771024602000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.</p>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":\"70 4\",\"pages\":\"593 - 601\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063771024602000\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771024602000","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Effect of Geometry on Flexural Wave Propagation in a Notched Bar
The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.