{"title":"On Estimating the Porosity of Metals Obtained by Hot Isostatic Pressing Based on Analysis of Structural Acoustic Noise","authors":"A. A. Khlybov, A. L. Uglov","doi":"10.1134/S1063771024602802","DOIUrl":"10.1134/S1063771024602802","url":null,"abstract":"<div><p>The article considers the possibility of using a nondestructive spectral-acoustic method for quantitative control of the porosity of Kh12MF steel samples obtained by hot isostatic pressing. The results of studies of samples obtained at different stages of hot isostatic pressing in the residual porosity range from 0 to 9% are presented. The control technique is based on the analysis of acoustic structural noise parameters. Various methods of measuring parameters of structural noise are analyzed from the point of view of sensitivity and measurement error of the used informative parameters of structural noise. Clarified calculation algorithms for determining the parameters of structural noise are proposed, and the results of their experimental verification are presented. The obtained results can serve as a basis for developing an engineering method for assessing the degree of porosity of the material of parts and structural elements obtained by hot isostatic pressing, under operating conditions.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"823 - 832"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tendency of Conductivity of Acoustic Vibration of the Design of Aircraft to Lowering with the Growth of Their Acoustic Loading","authors":"P. A. Popov","doi":"10.1134/S1063771024602486","DOIUrl":"10.1134/S1063771024602486","url":null,"abstract":"<div><p>The study presents the results of an analysis of experimental data that make it possible to reveal the behavior of the parameters of fluctuation in design during a change in acoustic pressure amplitude with the concept of conductivity of acoustic vibration. The nonlinear behavior of the vibration response of the design of different compartments of the rocket and segments of panels when loading by their field of acoustic pressure is confirmed. The general patterns of nonlinearity are found; in particular, it is shown that conductivity tends to lower with growth in acoustic loading that is generally close to a power function.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"865 - 871"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. M. Rochev, V. M. Mikushev, E. V. Charnaya, A. Yu. Serov
{"title":"Peculiarities of Separation of Spin–Phonon Coupling Mechanisms for 23Na in a NaF Crystal Depending on Temperature and the Number of Paramagnetic Centers","authors":"A. M. Rochev, V. M. Mikushev, E. V. Charnaya, A. Yu. Serov","doi":"10.1134/S1063771024602784","DOIUrl":"10.1134/S1063771024602784","url":null,"abstract":"<p>The possibility of changing the efficiency of nuclear spin–phonon coupling by NMR methods using the example of a NaF crystal in a wide temperature range is investigated. To suppress nuclear spin-lattice relaxation involving paramagnetic centers, continuous magnetic saturation at a single Larmor frequency is used instead of acoustic saturation of the <sup>23</sup>Na NMR signal at a double frequency. The influence of the (i) color centers induced by gamma irradiation and (ii) temperature on the separation of spin–phonon coupling mechanisms is studied. No suppression of impurity relaxation is observed for <sup>19</sup>F dipole nuclei. It is shown that the suggested magnetic saturation technique for complete or partial shutdown of impurity relaxation of quadrupole nuclei can be implemented on commercial pulse NMR spectrometers.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"816 - 822"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. V. Kvashennikova, M. S. Sergeeva, P. V. Yuldashev, I. B. Esipov, V. A. Khokhlova
{"title":"Demodulation of Pulsed Acoustic Signals in Strongly Nonlinear Propagation Regimes","authors":"A. V. Kvashennikova, M. S. Sergeeva, P. V. Yuldashev, I. B. Esipov, V. A. Khokhlova","doi":"10.1134/S1063771024602279","DOIUrl":"10.1134/S1063771024602279","url":null,"abstract":"<div><p>A one-dimensional nonlinear problem of parametric generation of low-frequency radiation is considered in the case of a pulsed high-frequency initial excitation capable of forming shock fronts in the wave profile. A numerical algorithm for solving the Burgers equation in the time domain using a Godunov-type shock-capturing scheme is developed. Examples of the propagation of model frequency-modulated signals with different envelope shapes at different ratios of nonlinear and dissipative effects, which limit the interaction length of pump waves, are considered. Examples of the evolution of waveforms and spectra in a process of self-demodulation of a high-frequency pump signal are given, with self-demodulation manifesting at shorter distances in strongly nonlinear propagation regimes due to additional attenuation of wave energy at shock fronts. It is shown that the efficiency of low-frequency generation increases in shockwave propagation regimes.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"797 - 807"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. I. Sysoev, M. M. Sychov, L. N. Shafigullin, S. V. Dyachenko
{"title":"Design of Sound Absorbing Honeycomb Materials with a Geometry of Triply Periodic Minimal Surfaces (TPMS)","authors":"E. I. Sysoev, M. M. Sychov, L. N. Shafigullin, S. V. Dyachenko","doi":"10.1134/S1063771024602796","DOIUrl":"10.1134/S1063771024602796","url":null,"abstract":"<div><p>The use of cellular materials with the geometry of triply periodic minimal surfaces (TPMS) is proposed for the creation of durable cellular materials with controlled acoustic characteristics. Homogeneous unit cells with the primitive, diamond, FRD and gyroid topologies with different porosities were developed, and their acoustic parameters were determined. Using the semiphenomenological Johnson–Champoux–Allard–Lafarge–Pride model, the sound absorption capacity of materials with this geometry was estimated. It was shown that by varying the size of the unit cell and thickness of the sample, it is possible to control the acoustic characteristics and average sound absorption coefficient in the range from 0.2 to 0.8. The reliability of the calculations was confirmed experimentally using additively manufactured samples. The results demonstrate the potential of using TPMS for creating materials with controlled pore geometry to achieve predictable sound absorption characteristics.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"887 - 898"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. F. Kopiev, N. N. Ostrikov, G. A. Faranosov, V. A. Titarev, S. L. Denisov, R. V. Akinshin
{"title":"On the Mechanism of Lateral Asymmetry of Noise Radiation from a Propeller Installed Near a Wing","authors":"V. F. Kopiev, N. N. Ostrikov, G. A. Faranosov, V. A. Titarev, S. L. Denisov, R. V. Akinshin","doi":"10.1134/S1063771024601729","DOIUrl":"10.1134/S1063771024601729","url":null,"abstract":"<div><p>The effect of lateral asymmetry in the radiation pattern of a propeller installed near a wing is studied. Using a simplified theoretical model of propeller loading noise and its shielding by a half-plane, as well as numerical modeling of the interaction of the propeller with a flat finite plate, it is shown that when the propeller and the scattering surface are close to each other, significant lateral asymmetry of propeller tonal noise radiation in the far field occurs. The mechanism underlying this effect, which accompanies the symmetrical noise directivity of the propeller itself and the symmetry of the scatterer (wing), is associated with the phased summation of the sound field radiated directly by the propeller and the secondary sound field generated on the surface of the wing due to scattering of perturbations (mainly hydrodynamic) created by the propeller on the leading edge of the wing. Thus, the study demonstrated that the presence of lateral asymmetry in the noise radiation pattern inherent in propeller aircraft is a consequence of the interaction between propellers and closely spaced wings.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"833 - 849"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. V. Yuldashev, E. O. Konnova, M. M. Karzova, V. A. Khokhlova
{"title":"Three-Dimensional Wide-Angle Parabolic Equations with Propagator Separation Based on Finite Fourier Series","authors":"P. V. Yuldashev, E. O. Konnova, M. M. Karzova, V. A. Khokhlova","doi":"10.1134/S1063771024602206","DOIUrl":"10.1134/S1063771024602206","url":null,"abstract":"<p>A possibility of constructing wide-angle diffraction models using Fourier series decomposition of the propagation operator of one-way wave equations is investigated. The propagation operator is considered as a function of the propagation step, reference wavenumber, and transversal Laplacian operator, which appears under the square-root of the pseudodifferential operator in the theory of one-way equations. It is shown that in this operator formalism, Fourier series decomposition approximates the one-way propagator by a weighted sum of exponential propagators, whose structure is similar to the propagator of the standard or small-angle parabolic equation. The exact propagator is modified using Hermite interpolation polynomials in order to achieve two crucial properties that guarantee fast convergence of the Fourier series: propagator periodicity and continuity of its derivatives. It is demonstrated that for three-dimensional diffraction problems, contrary to the standard split-step Padé approach, the proposed wide-angle propagation model allows for using efficient numerical methods and operator splitting procedures available for the standard parabolic equation. As a result, it is possible to organize computations separately along each of the two coordinate axes that are perpendicular to the predominant direction of wave propagation.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"783 - 796"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. F. Kopiev, S. A. Chernyshev, G. A. Faranosov, A. A. Korobov
{"title":"Validation of a Quadrupole Model of Sound Radiation of a Turbulent Jet Based on Multi-Microphone Acoustic Measurements","authors":"V. F. Kopiev, S. A. Chernyshev, G. A. Faranosov, A. A. Korobov","doi":"10.1134/S1063771024602814","DOIUrl":"10.1134/S1063771024602814","url":null,"abstract":"<div><p>A low-order model of quadrupole sound sources in a turbulent jet has been developed using the acoustic analogy method. Multimicrophone acoustic measurements of jet sound radiation are used to estimate the model parameters and validate it. Based on measurements carried out in different zones of the sound field, estimates of the size of the effective localization region of sound sources are made and the boundaries of the zone of dominance of quadrupole sound radiation over pseudo-sound fluctuations are determined. The proposed model can be used in practical estimates of the spectral and correlation characteristics of the far and near sound field of the jet.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"850 - 864"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1063771024602814.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determining the Minimum Number of Compensating Monopole Sources Required to Suppress the Integral Radiation Level","authors":"I. Sh. Fiks, G. E. Fiks","doi":"10.1134/S1063771024602723","DOIUrl":"10.1134/S1063771024602723","url":null,"abstract":"<div><p>Multidimensional optimization algorithms were used to numerically solve the problem of determining the minimum number of compensating monopole sources located in free space on two spherical surfaces surrounding the primary source, providing a given value of suppression of its integral radiation level.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"914 - 918"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pulsed Excitation Source in a Speech Signal","authors":"V. N. Sorokin","doi":"10.1134/S1063771024602838","DOIUrl":"10.1134/S1063771024602838","url":null,"abstract":"<p>The properties of a speech burst of closure are studied by using a database of 39 speakers with single-digit and multi-digit numerals and parallel recording of signals on a telephone handset and a directional microphone. A speech burst is detected by short-term and long-term detectors of spectral-temporal inhomogeneities and by a detector for the measure of similarity between the eigenfunctions of a consonant burst spectrum and a current speech burst spectrum. The probability for the presence of a voiced or voiceless closure is estimated in the spaces of an amplitude spectrum and a group delay spectrum from the ratio between the energies in the high- and low-frequency regions. The place of articulation for a back-lingual consonant influences the probability distribution for the duration of the interval between the onsets of a speech burst and a vowel, for the frequency of a peak with a maximum amplitude in the high-frequency region, for the ratio between the energies in the spectral regions of high and low frequencies of a speech burst, and also for the measure of similarity between the eigenfunctions of a consonant burst spectrum and a current speech burst spectrum.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 5","pages":"899 - 913"},"PeriodicalIF":0.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}