On the Evolution of a System of Shock Waves Created by Engine Fan Blades

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS
M. A. Yudin, V. F. Kopiev, S. A. Chernyshev, G. A. Faranosov, M. A. Demyanov, O. P. Bychkov
{"title":"On the Evolution of a System of Shock Waves Created by Engine Fan Blades","authors":"M. A. Yudin,&nbsp;V. F. Kopiev,&nbsp;S. A. Chernyshev,&nbsp;G. A. Faranosov,&nbsp;M. A. Demyanov,&nbsp;O. P. Bychkov","doi":"10.1134/S1063771024601985","DOIUrl":null,"url":null,"abstract":"<div><p>One source of modern aircraft engine noise is the fan, which is especially noticeable during takeoff at high angular rotation speeds. In such modes, supersonic flow around the fan blades occurs, which leads to the formation of shock waves that propagate upstream until they exit the engine duct. As a result, specific noise is emitted into the front hemisphere, consisting of a number of harmonics that are multiples of the fan rotation frequency. The paper analyzes this effect using a simple model of the propagation of a system of shock waves. An energy approach is used to demonstrate that a system of shock waves with shocks of equal amplitude attenuates the most rapidly.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771024601985","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

One source of modern aircraft engine noise is the fan, which is especially noticeable during takeoff at high angular rotation speeds. In such modes, supersonic flow around the fan blades occurs, which leads to the formation of shock waves that propagate upstream until they exit the engine duct. As a result, specific noise is emitted into the front hemisphere, consisting of a number of harmonics that are multiples of the fan rotation frequency. The paper analyzes this effect using a simple model of the propagation of a system of shock waves. An energy approach is used to demonstrate that a system of shock waves with shocks of equal amplitude attenuates the most rapidly.

Abstract Image

Abstract Image

论发动机风扇叶片产生的冲击波系统的演变
现代飞机发动机噪音的来源之一是风扇,这在高转速起飞时尤为明显。在这种模式下,风扇叶片周围会产生超音速流动,从而形成冲击波,并向上游传播,直到冲出发动机管道。因此,前半球会发出特定的噪声,由风扇旋转频率倍数的谐波组成。本文使用冲击波系统传播的简单模型分析了这种效应。利用能量方法证明,具有相同振幅的冲击波系统衰减最快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信