Heat Transfer最新文献

筛选
英文 中文
A multiple applications study of motile microorganisms past a vertical surface with double-diffusive binary base fluid 通过双扩散二元基质流体垂直表面运动微生物的多重应用研究
IF 2.8
Heat Transfer Pub Date : 2024-08-07 DOI: 10.1002/htj.23142
Battina Madhusudhana Rao, Putta Durgaprasad, Gurram Dharmaiah, Saeed Dinarvand, Saurav Gupta
{"title":"A multiple applications study of motile microorganisms past a vertical surface with double-diffusive binary base fluid","authors":"Battina Madhusudhana Rao,&nbsp;Putta Durgaprasad,&nbsp;Gurram Dharmaiah,&nbsp;Saeed Dinarvand,&nbsp;Saurav Gupta","doi":"10.1002/htj.23142","DOIUrl":"https://doi.org/10.1002/htj.23142","url":null,"abstract":"<p>This study investigates the various uses of density of motile microorganisms in the context of the flow of a binary base fluid with double diffusion past a vertical surface. The research aims to comprehend the interactions between motile microorganisms and the fluid dynamics, as well as the heat and mass transport mechanisms in this system. The analysis involves mathematically constructing the governing equations, transforming them into dimensionless nonlinear ordinary differential equations using similarity transformations, and numerically solving them using the MATLAB bvp4c solver. An analysis of the influence of several parameters on the profiles of velocity, temperature, concentration, nanoparticle concentration, and density of motile microorganisms is conducted using graphical representation. The findings demonstrate that boosting the thermophoresis parameter intensifies the temperature profile. In addition, an increase in the nanofluid Schmidt number results in a larger concentration of nanoparticles, whereas a higher bioconvection Lewis number reduces the density of the motile microorganism profile. These findings may find use in biomedical engineering as well as industrial processes that include enhancing the efficiency of mass transfer and bioconvection. Numeric simulation prophesies 99.9% for both shear stress and heat transfer rate intensification for Prandtl values are noticed.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4468-4487"},"PeriodicalIF":2.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on the pressure-driven flow of magnetized non-Newtonian Casson fluid between two corrugated curved walls of an arbitrary phase difference 关于磁化非牛顿卡松流体在任意相位差的两波纹曲壁之间的压力驱动流动的研究
IF 2.8
Heat Transfer Pub Date : 2024-08-07 DOI: 10.1002/htj.23146
Maham Mujahid, Zaheer Abbas, Muhammad Yousuf Rafiq
{"title":"A study on the pressure-driven flow of magnetized non-Newtonian Casson fluid between two corrugated curved walls of an arbitrary phase difference","authors":"Maham Mujahid,&nbsp;Zaheer Abbas,&nbsp;Muhammad Yousuf Rafiq","doi":"10.1002/htj.23146","DOIUrl":"https://doi.org/10.1002/htj.23146","url":null,"abstract":"<p>Pressure-driven movement is a fundamental concept with numerous applications in various industries, scientific disciplines, and fields of engineering. Its proper execution is vital for promoting revolutionary innovations and providing solutions in numerous sectors. Therefore, this article scrutinizes the pressure-driven flow of magnetized Casson fluid between two curved corrugated walls. The geometry of the channel is represented mathematically in an orthogonal curvilinear coordinate system. The corrugation grooves are described by sinusoidal functions with phase differences between the corrugated curved walls. The boundary perturbation method is used to find the analytical solution for the velocity field and volumetric flow rate, taking the corrugation amplitude as the perturbation parameter. The results show that the peak of the velocity increases with the radius of curvature and the width of the channel for a constant pressure gradient. The velocity exhibited a declining trend due to an increase in the Casson fluid parameter. For a sufficiently large corrugation wavenumber, the flow rate decreases, and the phase difference becomes irrelevant. However, the reduction in flow can be minimized by decreasing the channel radius of curvature. In general, a smooth curved channel will give the maximum flow rate for a large corrugation wavenumber. The model can be used to simulate blood flow in arteries with varying geometries and magnetic fields, aiding in the study of cardiovascular diseases and the design of medical devices like stents.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4510-4527"},"PeriodicalIF":2.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed convective heat transfer in a square cavity filled with power-law fluids under active flow modulation 充满幂律流体的方形空腔在主动流动调节下的混合对流传热
IF 2.8
Heat Transfer Pub Date : 2024-08-06 DOI: 10.1002/htj.23143
Md. Nasim Mia, Muhammad Abdullah, Arpita Das, Fahim Tanfeez Mahmood, Mohammad Nasim Hasan
{"title":"Mixed convective heat transfer in a square cavity filled with power-law fluids under active flow modulation","authors":"Md. Nasim Mia,&nbsp;Muhammad Abdullah,&nbsp;Arpita Das,&nbsp;Fahim Tanfeez Mahmood,&nbsp;Mohammad Nasim Hasan","doi":"10.1002/htj.23143","DOIUrl":"https://doi.org/10.1002/htj.23143","url":null,"abstract":"<p>The current study presents a computational investigation of mixed convective heat transfer in a square enclosure containing power-law fluid. An active flow modulator is employed in the form of a flat plate with negligible thickness, and the mixed convection is achieved through clockwise rotation of the plate. The rotation of the plate is modeled by incorporating a moving mesh technique. The solution is then obtained by applying the Finite Element Technique under the arbitrary Lagrangian–Eulerian framework. Numerical validation is performed with contemporary research studies consisting of rotating plates to justify the accuracy of the present study. The study is conducted at constant Prandtl number <i>Pr</i> = 1.0 and Reynolds number <i>Re</i> = 500 while varying the power-law index (0.6 ≤ <i>n</i> ≤ 1.4) and the Richardson number (0.1 ≤ <i>Ri</i> ≤ 10.0). The results have been presented in terms of the flow and thermal fields, spatially averaged Nusselt number, spatially averaged power consumption by the plate, and the velocity and temperature profile in the enclosure. The numerical findings indicate that a higher Richardson number encourages heat transfer. For the shear-thinning fluid, a 37% thermal augmentation is observed in comparison to the Newtonian fluid at <i>Ri</i> = 10. However, in the case of shear-thickening fluid, thermal performance was reduced by 21.13%. Small thermal oscillations are observed in naturally dominated mixed convection for shear-thinning fluids, but none are observed for shear-thickening or Newtonian fluids. In addition, the findings demonstrate that the flow modulator has a positive impact on heat transfer for the shear-thickening fluids (<i>n</i> &gt; 1) and an adverse effect for the shear-thinning fluids (<i>n</i> &lt; 1). Furthermore, the power consumption decreases as <i>Ri</i> increases, and it becomes negative beyond <i>Ri</i> = 1.0 due to the increase in natural convection strength.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4422-4447"},"PeriodicalIF":2.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing heat exchanger performance with perforated/non-perforated flow modulators generating continuous/discontinuous swirl flow: A comprehensive review 利用产生连续/不连续漩涡流的有孔/无孔流动调节器提高热交换器的性能:全面回顾
IF 2.8
Heat Transfer Pub Date : 2024-08-05 DOI: 10.1002/htj.23135
Md Atiqur Rahman, S. M. Mozammil Hasnain
{"title":"Enhancing heat exchanger performance with perforated/non-perforated flow modulators generating continuous/discontinuous swirl flow: A comprehensive review","authors":"Md Atiqur Rahman,&nbsp;S. M. Mozammil Hasnain","doi":"10.1002/htj.23135","DOIUrl":"https://doi.org/10.1002/htj.23135","url":null,"abstract":"<p>Heat exchangers are crucial in transferring heat and finding applications across various industries. Numerous strategies have been devised to improve and optimize the heat transfer process within these systems. Among these, passive methods have garnered significant attention for their ability to operate without external power consumption. This article examines the recent experimental and computational studies conducted by researchers since 2018 on passive enhancement techniques, especially twisted tape, wire coil, swirl flow generator, and others, to boost the thermal efficiency of heat exchangers and aid designers in adopting passive augmentation methods for compact heat exchangers. Recently, researchers' new class of flow maldistribution devices, referred to as swirl flow devices, has gained attention; which enhances convective heat transfer by introducing swirl into the main flow and disrupting the boundary layer at the tube surface through alterations in surface geometry. Twisted tape inserts are devices that demonstrate better performance in laminar flow compared to turbulent flow. Conversely, other passive techniques like ribs, conical nozzles, and conical rings are generally more effective in turbulent flow than laminar flow. A recent research trend is the utilization of nanofluids in combination with other passive heat transfer enhancement techniques like turbulators, ribs, and twisted tape inserts in heat exchangers, which can reduce exergy losses and improve overall convective heat transfer coefficient and effectiveness of heat exchanger.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4364-4393"},"PeriodicalIF":2.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlations of mixed convection in a double lid-driven shallow rectangular cavity: The case of non-Newtonian power-law fluids 双盖驱动浅矩形腔中混合对流的相关性:非牛顿幂律流体的情况
IF 2.8
Heat Transfer Pub Date : 2024-08-05 DOI: 10.1002/htj.23138
A. Louaraychi, M. Lamsaadi
{"title":"Correlations of mixed convection in a double lid-driven shallow rectangular cavity: The case of non-Newtonian power-law fluids","authors":"A. Louaraychi,&nbsp;M. Lamsaadi","doi":"10.1002/htj.23138","DOIUrl":"https://doi.org/10.1002/htj.23138","url":null,"abstract":"<p>This work provides an analytical and numerical assessment, complete with correlations, of mixed convection in a double lid-driven shallow rectangular enclosure, which confines non-Newtonian fluids of the Ostwald–de Waele type and which a uniform thermal flux heats. The finite volume method with the SIMPLER algorithm is the numerical method used to solve the governing partial differential equations along with the boundary conditions, where the parallel flow concept is the analytical approach. In the limits of the explored values of the governing parameters of this study, which are the Rayleigh number, the Peclet number, and the behavior index, the results obtained by these approaches appear to be in good harmony. On the basis of the results obtained by these approaches, we established helpful correlating relations between the governing parameters to realize the contribution of mixed convection to heat transfer. This leads to the finding that the ratio <i>Ra</i>/<i>Pe</i><sup>2+</sup><sup><i>n</i></sup> is the mixed convection parameter, which is the key to distinguishing the three convective flow modes. On the basis of this parameter, which allows the transition from one regime to another, it is possible to identify the zones that designate the predominance of natural, forced, and mixed convection. The limits of these latter depend on the behavior index, <i>n</i>, which is diversified from 0.6 to 1.4 to account for shear thinning (0 &lt; <i>n</i> &lt; 1, low apparent viscosity, high fluid flow, and high heat transfer rate), Newtonian (<i>n</i> = 1), and shear thickening (<i>n</i> &gt; 1, high apparent viscosity, slow fluid flow, and low heat transfer rate) fluids. On the other hand, the study presents and interprets the influences of the steering factors on heat transfer and fluid flow.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4394-4421"},"PeriodicalIF":2.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CFD study of heat transfer in power-law fluids over multiple corrugated circular cylinders in a heat exchanger 热交换器中多个波纹圆柱上幂律流体传热的 CFD 研究
IF 2.8
Heat Transfer Pub Date : 2024-07-30 DOI: 10.1002/htj.23133
Sonam Gopaldasji Rajpuriya, Radhe Shyam
{"title":"CFD study of heat transfer in power-law fluids over multiple corrugated circular cylinders in a heat exchanger","authors":"Sonam Gopaldasji Rajpuriya,&nbsp;Radhe Shyam","doi":"10.1002/htj.23133","DOIUrl":"https://doi.org/10.1002/htj.23133","url":null,"abstract":"<p>The heat transfer in power-law fluids across three corrugated circular cylinders placed in a triangular pitch arrangement is studied computationally in a confined channel. Continuity, momentum, and energy balance equations were solved using ANSYS FLUENT (Version 18.0). The flow is assumed to be steady, incompressible, two-dimensional, and laminar. A square domain of side 300<i>D</i><sub><i>h</i></sub> is selected after a detailed domain study. An optimized grid with 98,187 cells is used in the study. The convergence criteria of 10<sup>−7</sup> for the continuity, <i>x</i>-momentum, and <i>y</i>-momentum balances and 10<sup>−12</sup> for the energy equation were used. Constant density and non-Newtonian power-law viscosity modules were used. The diffusive term is discretized using a central difference scheme. Convective terms are discretized using the Second-Order Upwind scheme. Pressure–velocity coupling between continuity and momentum equations was implemented using the semi-implicit method for pressure-linked equation scheme. Streamlines show wake development behind the cylinders, which is very dominant at large <i>Re</i><sub><i>N</i></sub> and <i>n</i>. Isotherm contours are cramped at higher values of <i>Re</i><sub><i>N</i></sub> and <i>Pr</i><sub><i>N</i></sub>, implying higher heat transfer. Global parameters, like, <i>C</i><sub><i>d</i></sub> and <i>Nu</i>, are computed for the wide ranges of controlling dimensionless parameters, such as power-law index (0.3 ≤ <i>n</i> ≤ 1.5), Reynolds (0.1 ≤ <i>Re</i><sub><i>N</i></sub> ≤ 40), and Prandtl (0.72 ≤ <i>Pr</i><sub><i>N</i></sub> ≤ 500) numbers. The <i>Nu</i><sub><i>Local</i></sub> plot attains a pitch near the corrugation of the surface due to abrupt changes in velocity and temperature gradients. <i>Nu</i> increases with <i>Re</i><sub><i>N</i></sub> and/or <i>Pr</i><sub><i>N</i></sub> and decreases with <i>n</i> under ot herwise identical situations. <i>Nu</i> is correlated with pertinent parameters, namely, <i>Re</i><sub><i>N</i></sub>, <i>Pr</i><sub><i>N</i></sub>, and <i>n</i>.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4339-4363"},"PeriodicalIF":2.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of thermo-hydraulic flow inside corrugated channels: Comprehensive and comparative review 波纹通道内的热液流动特性:综合比较综述
IF 2.8
Heat Transfer Pub Date : 2024-07-26 DOI: 10.1002/htj.23136
Fatimah Q. AL-Daamee, Naseer H. Hamza
{"title":"Characteristics of thermo-hydraulic flow inside corrugated channels: Comprehensive and comparative review","authors":"Fatimah Q. AL-Daamee,&nbsp;Naseer H. Hamza","doi":"10.1002/htj.23136","DOIUrl":"10.1002/htj.23136","url":null,"abstract":"<p>Previous works that investigated the characteristics of heat transfer and fluid flow in channels with corrugated walls have been extensively reviewed in this study. In accordance with the fast increase in power consumption requirements, many researchers have investigated a new approach for cooling techniques that can enhance the cooling performance of devices without consuming more power. To improve the efficiency of energy systems, many investigators and engineers implement promising techniques such as surface optimization and additives as passive methods to augment the rates of heat transfer. Researchers investigated different corrugation profiles along with various working fluids as well as external power devices to further improve the heat exchange process of thermal systems. The aim of this article is to give a clear preview of the effects of different parameters such as wave parameters, Reynolds number, type of working fluid, and pulsating flow condition on the average and local Nusselt number, the pressure drop, the performance factors, and irreversibility. The main findings are listed in tables and depicted in figures, the matter that helps engineers and researchers to choose a suitable channel shape for their applications.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4285-4315"},"PeriodicalIF":2.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsteady flow past an impulsively started infinite vertical plate in presence of thermal stratification and chemical reaction 存在热分层和化学反应的脉冲式启动的无限垂直板上的非稳态流动
IF 2.8
Heat Transfer Pub Date : 2024-07-26 DOI: 10.1002/htj.23137
Nitul Kalita, Himangshu Kumar, Rupam Shankar Nath, Rudra Kanta Deka
{"title":"Unsteady flow past an impulsively started infinite vertical plate in presence of thermal stratification and chemical reaction","authors":"Nitul Kalita,&nbsp;Himangshu Kumar,&nbsp;Rupam Shankar Nath,&nbsp;Rudra Kanta Deka","doi":"10.1002/htj.23137","DOIUrl":"10.1002/htj.23137","url":null,"abstract":"&lt;p&gt;The purpose of this study is to analyze how thermal stratification affects fluid movement past an impulsively initiated infinite upright plate when first-order chemical reactions are present. Laplace's transform method is applied to achieve a closed-form solution for the nondimensional governing equations when &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The formula &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;msubsup&gt;\u0000 &lt;mo&gt;∫&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 \u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 \u0000 &lt;msup&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 \u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mover&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 ","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4316-4338"},"PeriodicalIF":2.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison between Hankel and Fourier methods for photothermal radiometry analysis 光热辐射测量分析中汉克尔和傅立叶方法的比较
IF 2.8
Heat Transfer Pub Date : 2024-07-25 DOI: 10.1002/htj.23134
Raza Sheikh, Quentin Pompidou, Ezekiel Villarreal, Nicolas Horny, Heng Ban
{"title":"A comparison between Hankel and Fourier methods for photothermal radiometry analysis","authors":"Raza Sheikh,&nbsp;Quentin Pompidou,&nbsp;Ezekiel Villarreal,&nbsp;Nicolas Horny,&nbsp;Heng Ban","doi":"10.1002/htj.23134","DOIUrl":"10.1002/htj.23134","url":null,"abstract":"<p>Photothermal radiometry has recently been investigated for use in the multidimensional thermal characterization of anisotropic samples. In application, there are two principal thermal models available for such characterization: a Cartesian model for the heat equation, which requires the application of three Fourier transforms to arrive at a solution (dubbed the Fourier technique), and a cylindrical model for the heat equation, which requires the application of a Hankel transform and a single Fourier transform (dubbed the Hankel technique). The Fourier technique allows for three-dimensional characterization, while the Hankel technique is expected to greatly reduce the computational time required. As these models can be very computationally expensive, the potential to reduce this cost is of great interest. In this work, these multidimensional models are presented after which they are compared for accuracy, computational time, and assumption limitations. It was found that both the Fourier and Hankel techniques could accurately arrive at desired thermal properties, but that the Hankel Technique reduced the computational time by between 100× and 250× depending upon mesh spacings. Accuracy limitations were found as the eccentricity of the heating laser was increased with a less than 13% error being induced from a beam with a 3–1 axis ratio. The Hankel technique shows ideal application in computationally expensive models which employ a relatively circular beam shape.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4268-4284"},"PeriodicalIF":2.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/htj.23134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141803674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advancements in flow control using plasma actuators and plasma vortex generators 利用等离子体致动器和等离子体涡流发生器进行流量控制的最新进展
IF 2.8
Heat Transfer Pub Date : 2024-07-24 DOI: 10.1002/htj.23131
Md. Abdullah, Muhammad Taharat Galib, Md. Shawkut Ali Khan, Tamanna Rahman, Md. Mosharrof Hossain
{"title":"Recent advancements in flow control using plasma actuators and plasma vortex generators","authors":"Md. Abdullah,&nbsp;Muhammad Taharat Galib,&nbsp;Md. Shawkut Ali Khan,&nbsp;Tamanna Rahman,&nbsp;Md. Mosharrof Hossain","doi":"10.1002/htj.23131","DOIUrl":"10.1002/htj.23131","url":null,"abstract":"<p>Flow-control techniques have attracted significant attention in many scientific areas due to their ability to improve the effectiveness and regulate the flow of aerodynamic devices. This study explores the latest developments in flow-control techniques, specifically concentrating on the cutting-edge technologies of plasma vortex generators (PVGs) and actuators. By taking advantage of the ionization of gases or air, plasma actuators have become a viable method for modifying an object's aerodynamic properties without needing physical moving parts. These actuators create localized plasma discharges that interact with the surrounding flow to provide accurate separation control, boundary-layer dynamics, and aerodynamic forces on aircraft wings, wind turbine blades, and other surfaces. PVG, which produce controlled vortical structures, offer a novel way to manipulate airflow with plasma actuators. These generators create swirling motions through plasma discharges that can be used in various technical applications, such as automotive, marine, and aviation, to modify boundary layers, reduce drag, and improve lift characteristics. This study offers an overview of recent work, focusing on the theoretical underpinnings, experimental validations, and practical applications of plasma-based flow-control technologies. Advances in plasma-generating techniques, computational modeling approaches, and experimental configurations to optimize and comprehend the intricate fluid–structure interactions are covered in the debate. Moreover, the study delves into incorporating plasma-based flow management into cars, renewable energy systems, and next-generation aerospace designs, highlighting the possibility of increased agility, decreased emissions, and efficiency. It also discusses the difficulties and potential paths for developing these technologies further for use in business and industry, highlighting the necessity of dependable, scalable, and durable solutions. Finally, this study summarizes the most recent advancements in vortex generators and plasma actuators for flow control. It demonstrates how they have the power to revolutionize fluid dynamics and aerodynamics in a variety of engineering fields.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4244-4267"},"PeriodicalIF":2.8,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141807301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信