Investigation of Heat Transfer of Nanoencapsulated Phase Change Material and Water in a Trapezoidal Cavity With a Sliding Wall

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-01-01 DOI:10.1002/htj.23273
Obai Younis, Yacine Khetib, Aissa Abderrahmane, Khalid H. Almitan, Houssem Laidoudi, Abdeldjalil Belazreg, Awadallah Ahmed
{"title":"Investigation of Heat Transfer of Nanoencapsulated Phase Change Material and Water in a Trapezoidal Cavity With a Sliding Wall","authors":"Obai Younis,&nbsp;Yacine Khetib,&nbsp;Aissa Abderrahmane,&nbsp;Khalid H. Almitan,&nbsp;Houssem Laidoudi,&nbsp;Abdeldjalil Belazreg,&nbsp;Awadallah Ahmed","doi":"10.1002/htj.23273","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In recent years, nanoencapsulated phase change materials (NEPCMs) have gained great interest in thermal management and control applications. This paper addresses the mixed convection of water and NEPCM confined within a lid-driven trapezoidal cavity. The bottom wall of the cavity is of a wavy shape; moreover, the cavity includes a hot flame and is subjected to a magnetic field. The Galerkin-finite element method was used to address the system governing equations and the results obtained were validated by preceding research works. The impacts of bottom wall undulation number (<i>N</i> = 1–4), Hartmann number (<i>Ha</i>) of 0–100, Reynolds number (<i>Re</i>) of 0–500, and hot flame location (left, center, and right) on thermal fields and flow pattern are presented and discussed. The findings show that placing the hot flame at the center gives the maximum thermal transfer rate while augmenting the undulation number of the bottom wall obstructs the liquid flow and hence reduces heat transmission rates. At the maximum Reynolds number, increasing the undulation number of the bottom wall from 1 to 4 and <i>Ha</i> from 0 to 100 reduces the Nusselt number by 26.7% and 54%, respectively.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 3","pages":"1952-1964"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, nanoencapsulated phase change materials (NEPCMs) have gained great interest in thermal management and control applications. This paper addresses the mixed convection of water and NEPCM confined within a lid-driven trapezoidal cavity. The bottom wall of the cavity is of a wavy shape; moreover, the cavity includes a hot flame and is subjected to a magnetic field. The Galerkin-finite element method was used to address the system governing equations and the results obtained were validated by preceding research works. The impacts of bottom wall undulation number (N = 1–4), Hartmann number (Ha) of 0–100, Reynolds number (Re) of 0–500, and hot flame location (left, center, and right) on thermal fields and flow pattern are presented and discussed. The findings show that placing the hot flame at the center gives the maximum thermal transfer rate while augmenting the undulation number of the bottom wall obstructs the liquid flow and hence reduces heat transmission rates. At the maximum Reynolds number, increasing the undulation number of the bottom wall from 1 to 4 and Ha from 0 to 100 reduces the Nusselt number by 26.7% and 54%, respectively.

近年来,纳米封装相变材料(NEPCMs)在热管理和控制应用中获得了极大的关注。本文探讨了封闭在一个由顶盖驱动的梯形空腔内的水和 NEPCM 的混合对流。空腔的底壁呈波浪形,此外,空腔中还包含热火焰并受到磁场的作用。研究采用了 Galerkin 有限元方法来解决系统支配方程,所获得的结果与之前的研究成果进行了验证。本文介绍并讨论了底壁起伏数(N = 1-4)、哈特曼数(Ha)(0-100)、雷诺数(Re)(0-500)和热焰位置(左、中、右)对热场和流动模式的影响。研究结果表明,将热火焰置于中心可获得最大的热传导率,而增加底壁的起伏数会阻碍液体流动,从而降低热传导率。在最大雷诺数下,底壁的起伏数从 1 增加到 4,Ha 从 0 增加到 100,努塞尔特数分别降低了 26.7% 和 54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信