Unmanned SystemsPub Date : 2023-12-08DOI: 10.1142/s2301385024410115
Shanlin Zhong, Yaxiong Wu, Wei Wu, Hong Qiao
{"title":"Controlling Musculoskeletal System with Spinal Cord-inspired Constraint Force Field Primitives","authors":"Shanlin Zhong, Yaxiong Wu, Wei Wu, Hong Qiao","doi":"10.1142/s2301385024410115","DOIUrl":"https://doi.org/10.1142/s2301385024410115","url":null,"abstract":"","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139011398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unmanned SystemsPub Date : 2023-12-01DOI: 10.1142/s2301385024410103
Tony X. Lin, Samuel Coogan, Donald A. Sofge, Fumin Zhang
{"title":"A Particle Fusion Approach for Distributed Filtering and Smoothing","authors":"Tony X. Lin, Samuel Coogan, Donald A. Sofge, Fumin Zhang","doi":"10.1142/s2301385024410103","DOIUrl":"https://doi.org/10.1142/s2301385024410103","url":null,"abstract":"","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138615239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unmanned SystemsPub Date : 2023-11-10DOI: 10.1142/s2301385025500141
Ahmed Allam, Abdelkrim Nemra, Mohamed Tadjine
{"title":"Cooperative guidance of a multi-quadrotors system with switching and reduced network information exchange: application to uncooperative target entrapping","authors":"Ahmed Allam, Abdelkrim Nemra, Mohamed Tadjine","doi":"10.1142/s2301385025500141","DOIUrl":"https://doi.org/10.1142/s2301385025500141","url":null,"abstract":"In this paper, we investigate the leader–followers Time-Varying Formation Tracking (TVFT) problem of a networked Multi-Agent Systems (MASs) based output feedback. The agents’ behavior is featured by linear dynamics. The interaction topology among the agents is switching over time, directed and only assumed to contain a directed spanning tree. This latter is rooted by a leader-agent whose control input is unknown and bounded. A novel fully distributed TVFT controller is proposed that exhibits a reduced network information exchange property among the agents, thus less communicating-resources are utilized. The proposed controlled design is based on an adaptive observer and disturbance rejection technique, where the unknown leader-input is viewed as an external disturbance. The key feature lies in introducing a local observer in each agent-controller design to observe all the relative neighboring output-measurements and the relative neighboring distributed observer-outputs, all gathered in one signal that we denote the agent’s network information signal. The Lyapunov theory is used to prove that the closed-loop MASs tracking error is stable. An analysis of the effect of the interaction topology structure on the tracking-error convergence rate is further provided, showing the validity of the proposed formation control for switching interaction topologies. Finally, to verify the effectiveness of the obtained results, the proposed controller is extended to a cooperative guidance of a networked quadrotors to track and entrap an uncooperative aerial target that plays the role of a passive leader.","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135088522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unmanned SystemsPub Date : 2023-11-10DOI: 10.1142/s2301385024430040
Julian Muller, Dieter Moormann
{"title":"Miniaturization and Control of an Unmanned Tiltwing Aircraft","authors":"Julian Muller, Dieter Moormann","doi":"10.1142/s2301385024430040","DOIUrl":"https://doi.org/10.1142/s2301385024430040","url":null,"abstract":"","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unmanned SystemsPub Date : 2023-11-10DOI: 10.1142/s2301385024410061
Lingxiang Xia, Jianbo Su
{"title":"Active Disturbance Rejection Predictive Control for Local Trajectory Planning of Unmanned Ground Vehicles","authors":"Lingxiang Xia, Jianbo Su","doi":"10.1142/s2301385024410061","DOIUrl":"https://doi.org/10.1142/s2301385024410061","url":null,"abstract":"","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unmanned SystemsPub Date : 2023-11-10DOI: 10.1142/s2301385024430027
Luiz F T Fernandez, Murat Bronz, Nathalie Bartoli, Thierry Lefebvre
{"title":"Development of a Mission-Tailored Tail-Sitter MAV","authors":"Luiz F T Fernandez, Murat Bronz, Nathalie Bartoli, Thierry Lefebvre","doi":"10.1142/s2301385024430027","DOIUrl":"https://doi.org/10.1142/s2301385024430027","url":null,"abstract":"Vertical takeoff and landing (VTOL) vehicles are among the most versatile UAVs, appropriate for various missions. Given that there are still open challenges regarding the VTOL design, this paper presents the full development and test cycle of a tail-sitter. IMAV 2022 competition rules were used to define the mission. A multidisciplinary design and optimization strategy was defined with the goal of maximizing competition score considering design, manufacturing, and competition constraints. The resulting vehicle was designed to fly at 18[Formula: see text]m/s while carrying 200[Formula: see text]g of payload with a total weight of approximately 720[Formula: see text]g. It flew for roughly 13 min at IMAV2022, helping its team to achieve 1st place at the “Package delivery challenge”. Further flight tests revealed the ultimate endurance performance as 18[Formula: see text]min.","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135087583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unmanned SystemsPub Date : 2023-11-10DOI: 10.1142/s2301385024420056
Haomeng Zhang, Baoqian Wang, Ruitao Wu, Junfei Xie, Yan Wan, Shengli Fu, Kejie Lu
{"title":"Exploring Networked Airborne Computing: A Comprehensive Approach with Advanced Simulator and Hardware Testbed","authors":"Haomeng Zhang, Baoqian Wang, Ruitao Wu, Junfei Xie, Yan Wan, Shengli Fu, Kejie Lu","doi":"10.1142/s2301385024420056","DOIUrl":"https://doi.org/10.1142/s2301385024420056","url":null,"abstract":"In recent years, networked airborne computing (NAC) has emerged as a promising paradigm because it can leverage the collaborative capabilities of unmanned aerial vehicles (UAVs) for distributed computing tasks. Despite the burgeoning interests in NAC and UAV-based computing, many existing studies depend on over-simplified simulations for performance evaluation. This reliance has led to a gap in our understanding of NAC’s true potential and challenges. To fill this gap, this paper presents a comprehensive approach: the creation of a realistic simulator and a novel hardware testbed. The simulator, developed using ROS and Gazebo, emulates networked UAVs, focusing on resource-sharing and distributed computing capabilities. This tool offers a cost-effective, scalable, and adaptable environment, making it ideal for preliminary investigations across a myriad of real-world scenarios. In parallel, our hardware testbed comprises multiple quadrotors, each equipped with a Pixhawk control unit, a Raspberry Pi computing module, a real-time kinematic (RTK) positioning system, and multiple communication units. Through extensive simulations and hardware tests, we delve into the key determinants of NAC performance, such as computation task size, number of UAVs, communication quality, and UAV mobility. Our findings not only underscore the inherent challenges in optimizing NAC performance but also provide pivotal insights for future enhancements. These insights encompass refining the simulator, reducing computation overheads, and equipping the hardware testbed with cutting-edge communication devices.","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135088355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unmanned SystemsPub Date : 2023-11-07DOI: 10.1142/s2301385024420068
Li Zhaoying, Huang Jiaqi, Fei Yuheng, Shi Ruoling
{"title":"A novel exploration mechanism of RRT guided by Deep Q-Network","authors":"Li Zhaoying, Huang Jiaqi, Fei Yuheng, Shi Ruoling","doi":"10.1142/s2301385024420068","DOIUrl":"https://doi.org/10.1142/s2301385024420068","url":null,"abstract":"","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135540542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unmanned SystemsPub Date : 2023-11-04DOI: 10.1142/s230138502550013x
Wenyan Xue, Jie Huang, Nan Chen, Yutao Chen, Dingci Lin
{"title":"Distributed formation control of multi-agent systems: A novel fast-optimal balanced differential game approach","authors":"Wenyan Xue, Jie Huang, Nan Chen, Yutao Chen, Dingci Lin","doi":"10.1142/s230138502550013x","DOIUrl":"https://doi.org/10.1142/s230138502550013x","url":null,"abstract":"This paper proposes an efficient fast-optimal balanced differential game (DG) approach to address the formation control problem in dynamic environments for networked multi-agent systems (MASs). Compared to existing receding horizon distributed differential game (RH-DDG) approaches, the proposed approach employs a two-layer game structure to balance optimality and real-time performance, with a focus on formation control, collision avoidance and obstacle avoidance. In the offline layer, the problem is converted into a distributed differential game (DDG) where each agent computes strategies using distributed information from locally neighboring agents. The strategy of each agent self-enforces a unique global Nash equilibrium (G-NE) with a strongly connected communication topology, providing an optimal reference trajectory for the online game. In the online layer, a receding horizon differential game with an event-trigger mechanism (RH-DGET) is presented to track the G-NE trajectory. Ego players are triggered to update online Nash strategies only when the event-triggering condition is satisfied, ensuring the real-time safety certificate. Rigorous proofs demonstrate that the online Nash strategies converge to the offline G-NE until the trigger ends, and a certain dwell time condition is given to prevent the Zeno behavior. Simulation results validate the effectiveness of the proposed approach.","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135728305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}