D. Singh, G. D. Thakre, L. N. S. Konathala, V. D. Prasad
{"title":"Friction Reduction Capabilities of Silicate Compounds Used in an Engine Lubricant on Worn Surfaces","authors":"D. Singh, G. D. Thakre, L. N. S. Konathala, V. D. Prasad","doi":"10.1155/2016/1901493","DOIUrl":"https://doi.org/10.1155/2016/1901493","url":null,"abstract":"Effects of magnesium silicate and alumina dispersed in engine lubricant on friction, wear, and tribosurface characteristics are studied under boundary and mixed lubrication conditions. Magnesium silicate and alumina, henceforth called as friction reducing compounds (FRC), were dispersed in engine lubricant in very low concentration of 0.01% weight/volume. Four-ball wear test rig was used to assess friction coefficient and wear scar diameter of balls lubricated with and without FRC based engine lubricant. Scanning electron microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) was used to analyse the tribosurface properties and elemental distributions on worn surfaces of the balls. Test results revealed that FRC based engine lubricant increases friction coefficient but marginally reduces wear scar diameter of new balls, whereas, test on the worn-out balls running on FRC based engine lubricants shows 46% reduction in friction coefficient compared to the new balls running on engine lubricants without FRC. Investigations on tribosurfaces with respect to morphology and elemental distribution showed the presence of Si and O elements in micropores of the worn surfaces of the balls, indicating role of FRC in friction coefficient reduction and antiwear properties. These FRC based engine lubricants may be used in the in-use engines.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2016 1","pages":"1-9"},"PeriodicalIF":2.6,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/1901493","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64250714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"True Stability of Lubricants Determined Using the Ball-on-Disk Test","authors":"A. Tortora, D. Veeregowda","doi":"10.1155/2016/4020537","DOIUrl":"https://doi.org/10.1155/2016/4020537","url":null,"abstract":"True stability of lubricants can be determined when there is minimum change in the contact area and also the intervention of wear debris in the contact zone. Here, we have used the ball-on-disk instrument with the migrating point contact, that is, relative motion between the ball and disk condition to fix the contact area and minimize the wear debris at the contact zone. The jump in the friction coefficient indicates the film failure, which appeared earlier for the motor oil 5W30 compared to 5W40. Such profile was not recorded in absence of relative motion. Therefore, 5W40 was considered to have a better lubricant stability than 5W30. Applying the same test condition to the natural lubricants shows that glycerol has better lubricant stability than glycerol-water mixture. Superior true lubricant stability by glycerol and 5W40 can be related to its high viscosity. However, they were less wear resistant compared to low viscosity lubricants like 5W30 and glycerol-water. We suspect the role of microscopic wear debris at the contact zone for this behavior although it should have been avoided in the migrating point contact condition. Overall, ball-on-disk instrument with a migrating point contact condition is an effective technique to determine the stability of lubricants.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2016 1","pages":"1-6"},"PeriodicalIF":2.6,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/4020537","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64361659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Lohner, A. Ziegltrum, J.-P. Stemplinger, K. Stahl
{"title":"Engineering Software Solution for Thermal Elastohydrodynamic Lubrication Using Multiphysics Software","authors":"T. Lohner, A. Ziegltrum, J.-P. Stemplinger, K. Stahl","doi":"10.1155/2016/6507203","DOIUrl":"https://doi.org/10.1155/2016/6507203","url":null,"abstract":"The complexity of thermal elastohydrodynamic lubrication (TEHL) problems has led to a variety of specialised numerical approaches ranging from finite difference based direct and inverse iterative methods such as Multilevel Multi-Integration solvers, via differential deflection methods, to finite element based full-system approaches. Hence, not only knowledge of the physical and technical relationships but also knowledge of the numerical procedures and solvers is necessary to perform TEHL simulations. Considering the state of the art of multiphysics software, the authors note the absence of a commercial software package for solving TEHL problems embedded in larger multiphysics software. By providing guidelines on how to implement a TEHL simulation model in commercial multiphysics software, the authors want to stimulate the research in computational tribology, so that, hopefully, the research focus can be shifted even more on physical modelling instead of numerical modelling. Validations, as well as result examples of the suggested TEHL model by means of simulated coefficients of friction, coated surfaces, and nonsmooth surfaces, highlight the flexibility and simplicity of the presented approach.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2016 1","pages":"1-13"},"PeriodicalIF":2.6,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/6507203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64481852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Shanmugavel, Thirumalai Kumaran Sundaresan, Uthayakumar Marimuthu, Pethuraj Manickaraj
{"title":"Process Optimization and Wear Behavior of Red Mud Reinforced Aluminum Composites","authors":"R. Shanmugavel, Thirumalai Kumaran Sundaresan, Uthayakumar Marimuthu, Pethuraj Manickaraj","doi":"10.1155/2016/9082593","DOIUrl":"https://doi.org/10.1155/2016/9082593","url":null,"abstract":"This work presents the application of hybrid approach for optimizing the dry sliding wear behavior of red mud based aluminum metal matrix composites (MMCs). The essential input parameters are identified as applied load, sliding velocity, wt.% of reinforcement, and hardness of the counterpart material, whereas the output responses are specific wear rate and Coefficient of Friction (COF). The Grey Relational Analysis (GRA) is performed to optimize the multiple performance characteristics simultaneously. The Principle Component Analysis (PCA) and entropy methods are applied to evaluate the values of weights corresponding to each output response. The experimental result shows that the wt.% of reinforcements (%) followed by the sliding velocity (%) contributed more to affecting the dry sliding wear behavior. The optimized conditions are verified through the confirmation test, which exhibited an improvement in the grey relational grade of specific wear rate and COF by 0.3 and 0.034, respectively.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2016 1","pages":"1-7"},"PeriodicalIF":2.6,"publicationDate":"2016-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/9082593","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64597831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Quality Function Deployment-Based Model for Cutting Fluid Selection","authors":"K. Prasad, S. Chakraborty","doi":"10.1155/2016/3978102","DOIUrl":"https://doi.org/10.1155/2016/3978102","url":null,"abstract":"Cutting fluid is applied for numerous reasons while machining a workpiece, like increasing tool life, minimizing workpiece thermal deformation, enhancing surface finish, flushing away chips from cutting surface, and so on. Hence, choosing a proper cutting fluid for a specific machining application becomes important for enhanced efficiency and effectiveness of a manufacturing process. Cutting fluid selection is a complex procedure as the decision depends on many complicated interactions, including work material’s machinability, rigorousness of operation, cutting tool material, metallurgical, chemical, and human compatibility, reliability and stability of fluid, and cost. In this paper, a decision making model is developed based on quality function deployment technique with a view to respond to the complex character of cutting fluid selection problem and facilitate judicious selection of cutting fluid from a comprehensive list of available alternatives. In the first example, HD-CUTSOL is recognized as the most suitable cutting fluid for drilling holes in titanium alloy with tungsten carbide tool and in the second example, for performing honing operation on stainless steel alloy with cubic boron nitride tool, CF5 emerges out as the best honing fluid. Implementation of this model would result in cost reduction through decreased manpower requirement, enhanced workforce efficiency, and efficient information exploitation.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2016 1","pages":"1-10"},"PeriodicalIF":2.6,"publicationDate":"2016-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/3978102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64359887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. H. Sakinah, A. K. Amirruddin, K. Kadirgama, D. Ramasamy, Md. Mustafizur Rahman, M. M. Noor
{"title":"The Application of Response Surface Methodology in the Investigation of the Tribological Behavior of Palm Cooking Oil Blended in Engine Oil","authors":"M. H. Sakinah, A. K. Amirruddin, K. Kadirgama, D. Ramasamy, Md. Mustafizur Rahman, M. M. Noor","doi":"10.1155/2016/6545904","DOIUrl":"https://doi.org/10.1155/2016/6545904","url":null,"abstract":"The purpose of this study was to determine the optimal design parameters and to indicate which of the design parameters are statistically significant for obtaining a low coefficient of friction (COF) and low wear rate with waste palm oil blended with SAE 40. The tribology performance was evaluated using a piston-ring-liner contact tester. The design of experiment (DOE) was constructed by using response surface methodology (RSM) to minimize the number of experimental conditions and to develop a mathematical model between the key process parameters such as rotational speeds (200 rpm to 300 rpm), volume concentration (0% to 10% waste oil), and applied loads (2 kg to 9 kg). Analysis of variance (ANOVA) test was also carried out to check the adequacy of the empirical models developed. Scanning electron microscopy (SEM) was used to examine the damage features at the worn surface under lubricant contact conditions.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2016 1","pages":"1-11"},"PeriodicalIF":2.6,"publicationDate":"2016-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/6545904","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64483898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Formisano, F. Minutolo, A. Caraviello, L. Carrino, M. Durante, A. Langella
{"title":"Influence of Eta-Phase on Wear Behavior of WC-Co Carbides","authors":"A. Formisano, F. Minutolo, A. Caraviello, L. Carrino, M. Durante, A. Langella","doi":"10.1155/2016/5063274","DOIUrl":"https://doi.org/10.1155/2016/5063274","url":null,"abstract":"Cemented carbides, also known as Widia, are hard metals produced by sintering process and widely used in mechanical machining. They show high cutting capacity and good wear resistance; consequently, they result to be excellent materials for manufacturing cutting tools and sandblast nozzles. In this work, the wear resistance of WC-Co carbides containing Eta-phase, a secondary phase present in the hard metals when a carbon content deficiency occurs, is analyzed. Different mixtures of carbide are prepared and sintered, with different weight percentages of carbon, in order to form Eta-phase and then analyze how the carbon content influences the wear resistance of the material. This characterization is carried out by abrasive wear tests. The test parameters are chosen considering the working conditions of sandblast nozzles. Additional information is gathered through microscopic observations and the evaluation of hardness and microhardness of the different mixtures. The analyses highlight that there is a limit of carbon content below which bad sintering occurs. Considering the mixtures without these sintering problems, they show a wear resistance depending on the size and distribution of the Eta-phase; moreover, the one with high carbon content deficiency shows the best performance.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2016 1","pages":"1-6"},"PeriodicalIF":2.6,"publicationDate":"2016-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/5063274","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64410348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Chowdhury, U. K. Debnath, D. M. Nuruzzaman, M. Islam
{"title":"Experimental Evaluation of Erosion of Gunmetal under Asymmetrical Shaped Sand Particle","authors":"M. Chowdhury, U. K. Debnath, D. M. Nuruzzaman, M. Islam","doi":"10.1155/2015/815179","DOIUrl":"https://doi.org/10.1155/2015/815179","url":null,"abstract":"The erosion characteristics of gunmetal have been evaluated practically at different operating conditions. Asymmetrical silica sand (SiO2) is taken into account as erodent within range of 300–600 μm. The impact velocity within 30–50 m/sec, impact angle 15–900, and stand off distance 15–25 mm are inspected as other relevant operating test conditions. The maximum level of erosion is obtained at impact angle 15° which indicates the ductile manner of the tested gunmetal. The higher the impact velocity, the higher the erosion rate as almost linear fashion is observed. Mass loss of gunmetal reduces with the increase of stand-off distance. A dimensional analysis, erosion efficiency (η), and relationship between friction and erosion indicate the prominent correlation. The test results are designated using Taguchi’s and ANOVA concept. ratio indicates that there are 1.72% deviations that are estimated between predicted and experimental results. To elaborately analyze the results, ANN and GMDH methods are mentioned. After erosion process of tested composite, the damage propagation on surfaces is examined using SEM for the confirmation of possible nature of wear behavior. The elemental composition of eroded test samples at varying percentage of gunmetal is analyzed by EDX analysis.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"11 1","pages":"1-31"},"PeriodicalIF":2.6,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/815179","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65163086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microstructure Characteristics and Properties of HVOF Sprayed Ni-Based Alloy Nano-h-BN Self-Lubricating Composite Coatings","authors":"Xiao-feng Zhang, Long Zhang, Z. Huang","doi":"10.1155/2015/621278","DOIUrl":"https://doi.org/10.1155/2015/621278","url":null,"abstract":"A Ni-based alloy/nano-h-BN self-lubricating composite coating was produced on medium carbon steel by high velocity oxygen fuel (HVOF) spraying technique. The powder feedstocks for HVOF spraying were prepared by ball milling and agglomerated the nano-h-BN with Ni-based alloy powders. The microstructure and mechanical properties of coatings have been investigated. With the increasing of h-BN contents, some delaminations appeared gradually in the coatings and a continuous network with h-BN phase embedded formed in the metallic matrix. The average microhardness of the self-lubricating coating was a little lower for the addition of soft solid lubricant. The friction coefficient of coatings is in the ranges of 0.38–0.48 and 0.38–0.52 at ambient temperature and 400°C, respectively. The maximum bonding strength of coatings reached 23.83 MPa.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2015 1","pages":"1-6"},"PeriodicalIF":2.6,"publicationDate":"2015-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/621278","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65063695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Yousef, T. Osman, M. Khattab, A. Bahr, A. Youssef
{"title":"A New Design of the Universal Test Rig to Measure the Wear Characterizations of Polymer Acetal Gears (Spur, Helical, Bevel, and Worm)","authors":"S. Yousef, T. Osman, M. Khattab, A. Bahr, A. Youssef","doi":"10.1155/2015/926918","DOIUrl":"https://doi.org/10.1155/2015/926918","url":null,"abstract":"This work aims to study the wear characterization of common types of acetal polymer gears (spur, helical, bevel, and worm) using a new TS universal test rig, in order to obtain reliable results and as a reference when compared with acetal nanocomposite gears later. The TS universal test rig consists of three different units that are connected by a main driver shaft and a pair of constantly meshing metal spur gears, which transfer power to the bevel and worm test units. The first unit is used to test the bevel gears, the second unit is used to test the spur and helical gears, and the third unit is used to test the worm gears. The loading mechanism is similarly designed to block the brake mechanism. Hobbing and milling machines were used to machine an injection-moulded polymer flanges and produce the tested gears. All gear pairs, except the worm gear, have identical gear ratios. The experiments were performed at speed 1420 rpm and the torque was 4 Nm. The results showed that the wear rates (in the form of weight loss) of spur gears were consistent with the previous results and the other gear types had larger wear rates.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2015 1","pages":"1-8"},"PeriodicalIF":2.6,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/926918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64166344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}