使用多物理场软件的热弹性流体动力润滑工程软件解决方案

IF 1.5 Q3 ENGINEERING, MECHANICAL
T. Lohner, A. Ziegltrum, J.-P. Stemplinger, K. Stahl
{"title":"使用多物理场软件的热弹性流体动力润滑工程软件解决方案","authors":"T. Lohner, A. Ziegltrum, J.-P. Stemplinger, K. Stahl","doi":"10.1155/2016/6507203","DOIUrl":null,"url":null,"abstract":"The complexity of thermal elastohydrodynamic lubrication (TEHL) problems has led to a variety of specialised numerical approaches ranging from finite difference based direct and inverse iterative methods such as Multilevel Multi-Integration solvers, via differential deflection methods, to finite element based full-system approaches. Hence, not only knowledge of the physical and technical relationships but also knowledge of the numerical procedures and solvers is necessary to perform TEHL simulations. Considering the state of the art of multiphysics software, the authors note the absence of a commercial software package for solving TEHL problems embedded in larger multiphysics software. By providing guidelines on how to implement a TEHL simulation model in commercial multiphysics software, the authors want to stimulate the research in computational tribology, so that, hopefully, the research focus can be shifted even more on physical modelling instead of numerical modelling. Validations, as well as result examples of the suggested TEHL model by means of simulated coefficients of friction, coated surfaces, and nonsmooth surfaces, highlight the flexibility and simplicity of the presented approach.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/6507203","citationCount":"39","resultStr":"{\"title\":\"Engineering Software Solution for Thermal Elastohydrodynamic Lubrication Using Multiphysics Software\",\"authors\":\"T. Lohner, A. Ziegltrum, J.-P. Stemplinger, K. Stahl\",\"doi\":\"10.1155/2016/6507203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of thermal elastohydrodynamic lubrication (TEHL) problems has led to a variety of specialised numerical approaches ranging from finite difference based direct and inverse iterative methods such as Multilevel Multi-Integration solvers, via differential deflection methods, to finite element based full-system approaches. Hence, not only knowledge of the physical and technical relationships but also knowledge of the numerical procedures and solvers is necessary to perform TEHL simulations. Considering the state of the art of multiphysics software, the authors note the absence of a commercial software package for solving TEHL problems embedded in larger multiphysics software. By providing guidelines on how to implement a TEHL simulation model in commercial multiphysics software, the authors want to stimulate the research in computational tribology, so that, hopefully, the research focus can be shifted even more on physical modelling instead of numerical modelling. Validations, as well as result examples of the suggested TEHL model by means of simulated coefficients of friction, coated surfaces, and nonsmooth surfaces, highlight the flexibility and simplicity of the presented approach.\",\"PeriodicalId\":44668,\"journal\":{\"name\":\"Advances in Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/6507203\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/6507203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6507203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 39

摘要

热弹性流体动力润滑(TEHL)问题的复杂性导致了各种专门的数值方法,从基于有限差分的直接迭代法和逆迭代法(如多级多积分求解法),通过微分偏转方法,到基于有限元的全系统方法。因此,要进行TEHL模拟,不仅需要物理和技术关系的知识,还需要数值程序和求解器的知识。考虑到多物理场软件的技术水平,作者注意到缺少一个商业软件包来解决嵌入在大型多物理场软件中的TEHL问题。通过提供如何在商业多物理场软件中实现TEHL仿真模型的指南,作者希望刺激计算摩擦学的研究,因此,希望研究重点可以更多地转移到物理建模而不是数值建模上。通过模拟摩擦系数、涂层表面和非光滑表面,对所建议的TEHL模型进行了验证和结果示例,强调了所提出方法的灵活性和简单性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Software Solution for Thermal Elastohydrodynamic Lubrication Using Multiphysics Software
The complexity of thermal elastohydrodynamic lubrication (TEHL) problems has led to a variety of specialised numerical approaches ranging from finite difference based direct and inverse iterative methods such as Multilevel Multi-Integration solvers, via differential deflection methods, to finite element based full-system approaches. Hence, not only knowledge of the physical and technical relationships but also knowledge of the numerical procedures and solvers is necessary to perform TEHL simulations. Considering the state of the art of multiphysics software, the authors note the absence of a commercial software package for solving TEHL problems embedded in larger multiphysics software. By providing guidelines on how to implement a TEHL simulation model in commercial multiphysics software, the authors want to stimulate the research in computational tribology, so that, hopefully, the research focus can be shifted even more on physical modelling instead of numerical modelling. Validations, as well as result examples of the suggested TEHL model by means of simulated coefficients of friction, coated surfaces, and nonsmooth surfaces, highlight the flexibility and simplicity of the presented approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Tribology
Advances in Tribology ENGINEERING, MECHANICAL-
CiteScore
5.00
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信