{"title":"The Okada space and vanishing of ${L(1,{f})}$","authors":"M. Murty, Siddhi Pathak","doi":"10.7169/facm/1952","DOIUrl":"https://doi.org/10.7169/facm/1952","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42035749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the derivative of iterations of the Minkowski question mark function at special points","authors":"N. Shulga","doi":"10.7169/facm/1966","DOIUrl":"https://doi.org/10.7169/facm/1966","url":null,"abstract":"For the Minkowski question mark function ?(x) we consider derivative of the function fn(x) = ?(?(...? } {{ } n times (x))). Apart from obvious cases (rational numbers for example) it is non-trivial to find explicit examples of numbers x for which f ′ n (x) = 0. In this paper we present a set of irrational numbers, such that for every element x0 of this set and for any n ∈ Z+ one has f ′ n (x0) = 0.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47218659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gauss sums and the maximum cliquesin generalized Paley graphs of square order","authors":"Chi Hoi Yip","doi":"10.7169/facm/1981","DOIUrl":"https://doi.org/10.7169/facm/1981","url":null,"abstract":"Let GP (q, d) be the d-Paley graph defined on the finite field Fq . It is notoriously difficult to improve the trivial upper bound √ q on the clique number of GP (q, d). In this paper, we investigate the connection between Gauss sums over a finite field and the maximum cliques of their corresponding generalized Paley graphs. We show that the trivial upper bound on the clique number of GP (q, d) is tight if and only if d | (√q + 1), which strengthens the previous related results by Broere-Döman-Ridley and Schneider-Silva. We also obtain a new simple proof of Stickelberger’s theorem on evaluating semi-primitive Gauss sums.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44025836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytic continuation of multi-variable Arakawa-Kaneko zeta function for positive indices and its values at positive integers","authors":"K. Ito","doi":"10.7169/facm/1974","DOIUrl":"https://doi.org/10.7169/facm/1974","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49466735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic behavior of Bernoulli-Dunkland Euler-Dunkl polynomials and their zeros","authors":"J. M. Ceniceros, J. Varona","doi":"10.7169/facm/1968","DOIUrl":"https://doi.org/10.7169/facm/1968","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44295523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a generalization of the Euler totient function","authors":"W. Zhai","doi":"10.7169/FACM/1917","DOIUrl":"https://doi.org/10.7169/FACM/1917","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42036478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heat operators on modular and quasimodular polynomials","authors":"Min Ho Lee","doi":"10.7169/facm/1978","DOIUrl":"https://doi.org/10.7169/facm/1978","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47411051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"${P}$-adic approximation of Dedekind sumsin function fields","authors":"Y. Hamahata","doi":"10.7169/facm/1961","DOIUrl":"https://doi.org/10.7169/facm/1961","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41449406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the consecutive prime divisors of an integer","authors":"J. Koninck, Imre Kátai Imre Kátai","doi":"10.7169/facm/1922","DOIUrl":"https://doi.org/10.7169/facm/1922","url":null,"abstract":"Paul Erd˝os, Janos Galambos and others have studied the relative size of the consecutive prime divisors of an integer. Here, we further extend this study by examining the distribution of the consecutive neighbour spacings between the prime divisors p 1 ( n ) < p 2 ( n ) < · · · < p r ( n ) of a typical integer n ≥ 2. In particular, setting γ j ( n ) := log p j ( n ) / log p j +1 ( n ) for j = 1 , 2 , . . . , r − 1 and, for any λ ∈ (0 , 1], introducing U λ ( n ) := # { j ∈ { 1 , 2 , . . . , r − 1 } : γ j ( n ) < λ } , we establish the mean value of U λ ( n ) and prove that U λ ( n ) /r ∼ λ for almost all integers n ≥ 2. We also examine the shifted prime version of these two results and study other related functions.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42847513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calculating “small” solutions of inhomogeneous relative Thue inequalities","authors":"Istv'an Ga'al","doi":"10.7169/facm/1876","DOIUrl":"https://doi.org/10.7169/facm/1876","url":null,"abstract":"Thue equations and their relative and inhomogeneous extensions are well known in the literature. There exist methods, usually tedious methods, for the complete resolution of these equations. On the other hand our experiences show that such equations usually do not have extremely large solutions. Therefore in several applications it is useful to have a fast algorithm to calculate the\"small\"solutions of these equations. Under\"small\"solutions we mean the solutions, say, with absolute values or sizes $leq 10^{100}$. Such algorithms were formerly constructed for Thue equations, relative Thue equations. The relative and inhomogeneous Thue equations have applications in solving index form equations and certain resultant form equations. It is also known that certain\"totally real\"relative Thue equations can be reduced to absolute Thue equations (equations over $Bbb Z$). As a common generalization of the above results, in our paper we develop a fast algorithm for calculating\"small\"solutions (say with sizes $leq 10^{100}$) of inhomogeneous relative Thue equations, more exactly of certain inequalities that generalize those equations. We shall show that in the\"totally real\"case these can similarly be reduced to absolute inhomogeneous Thue inequalities. We also give an application to solving certain resultant equations in the relative case.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48913708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}