平方阶广义Paley图的Gauss和与最大群

Pub Date : 2021-01-01 DOI:10.7169/facm/1981
Chi Hoi Yip
{"title":"平方阶广义Paley图的Gauss和与最大群","authors":"Chi Hoi Yip","doi":"10.7169/facm/1981","DOIUrl":null,"url":null,"abstract":"Let GP (q, d) be the d-Paley graph defined on the finite field Fq . It is notoriously difficult to improve the trivial upper bound √ q on the clique number of GP (q, d). In this paper, we investigate the connection between Gauss sums over a finite field and the maximum cliques of their corresponding generalized Paley graphs. We show that the trivial upper bound on the clique number of GP (q, d) is tight if and only if d | (√q + 1), which strengthens the previous related results by Broere-Döman-Ridley and Schneider-Silva. We also obtain a new simple proof of Stickelberger’s theorem on evaluating semi-primitive Gauss sums.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Gauss sums and the maximum cliquesin generalized Paley graphs of square order\",\"authors\":\"Chi Hoi Yip\",\"doi\":\"10.7169/facm/1981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let GP (q, d) be the d-Paley graph defined on the finite field Fq . It is notoriously difficult to improve the trivial upper bound √ q on the clique number of GP (q, d). In this paper, we investigate the connection between Gauss sums over a finite field and the maximum cliques of their corresponding generalized Paley graphs. We show that the trivial upper bound on the clique number of GP (q, d) is tight if and only if d | (√q + 1), which strengthens the previous related results by Broere-Döman-Ridley and Schneider-Silva. We also obtain a new simple proof of Stickelberger’s theorem on evaluating semi-primitive Gauss sums.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

设GP(q,d)是在有限域Fq上定义的d-Paley图。改进GP(q,d)的团数的平凡上界√q是出了名的困难。在本文中,我们研究了有限域上的高斯和与其对应的广义Paley图的最大群之间的联系。我们证明了GP(q,d)的团数的平凡上界是紧的当且仅当d|(√q+1),这加强了Broere-döman-Ridley和Schneider Silva先前的相关结果。我们还得到了Stickelberger定理关于半原始高斯和的一个新的简单证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Gauss sums and the maximum cliquesin generalized Paley graphs of square order
Let GP (q, d) be the d-Paley graph defined on the finite field Fq . It is notoriously difficult to improve the trivial upper bound √ q on the clique number of GP (q, d). In this paper, we investigate the connection between Gauss sums over a finite field and the maximum cliques of their corresponding generalized Paley graphs. We show that the trivial upper bound on the clique number of GP (q, d) is tight if and only if d | (√q + 1), which strengthens the previous related results by Broere-Döman-Ridley and Schneider-Silva. We also obtain a new simple proof of Stickelberger’s theorem on evaluating semi-primitive Gauss sums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信