Integral triangles and perpendicular quadrilateral pairs with a common area and a common perimeter

IF 0.5 Q3 MATHEMATICS
A. S. Zargar, Yong Zhang
{"title":"Integral triangles and perpendicular quadrilateral pairs with a common area and a common perimeter","authors":"A. S. Zargar, Yong Zhang","doi":"10.7169/facm/1842","DOIUrl":null,"url":null,"abstract":"By the theory of elliptic curves, we show that there are infinitely many integral right triangle-perpendicular quadrilateral, integral isosceles triangle-perpendicular quadrilateral, and Heron triangle-perpendicular quadrilateral pairs with a common area and a common perimeter. Moreover, for the elliptic curve associated to integral isosceles triangle and integral perpendicular quadrilateral pairs, we present several subfamilies of rank $\\geq 4$, and show the existence of infinitely many elliptic curves of rank $\\geq 5$, parameterized by the points of an elliptic curve of positive rank.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

By the theory of elliptic curves, we show that there are infinitely many integral right triangle-perpendicular quadrilateral, integral isosceles triangle-perpendicular quadrilateral, and Heron triangle-perpendicular quadrilateral pairs with a common area and a common perimeter. Moreover, for the elliptic curve associated to integral isosceles triangle and integral perpendicular quadrilateral pairs, we present several subfamilies of rank $\geq 4$, and show the existence of infinitely many elliptic curves of rank $\geq 5$, parameterized by the points of an elliptic curve of positive rank.
具有公共面积和公共周长的积分三角形和垂直四边形对
利用椭圆曲线理论,我们证明了有无限多个面积和周长相同的积分直角三角形-垂直四边形、积分等腰三角形-垂直边形和Heron三角形-垂直四边形对。此外,对于与积分等腰三角形和积分垂直四边形对相关的椭圆曲线,我们给出了秩为$\geq4$的几个亚族,并证明了秩为$\geq5$的无限多条椭圆曲线的存在性,这些椭圆曲线由正秩椭圆曲线的点参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信