关于整数的连续素数

Pub Date : 2021-01-01 DOI:10.7169/facm/1922
J. Koninck, Imre Kátai Imre Kátai
{"title":"关于整数的连续素数","authors":"J. Koninck, Imre Kátai Imre Kátai","doi":"10.7169/facm/1922","DOIUrl":null,"url":null,"abstract":"Paul Erd˝os, Janos Galambos and others have studied the relative size of the consecutive prime divisors of an integer. Here, we further extend this study by examining the distribution of the consecutive neighbour spacings between the prime divisors p 1 ( n ) < p 2 ( n ) < · · · < p r ( n ) of a typical integer n ≥ 2. In particular, setting γ j ( n ) := log p j ( n ) / log p j +1 ( n ) for j = 1 , 2 , . . . , r − 1 and, for any λ ∈ (0 , 1], introducing U λ ( n ) := # { j ∈ { 1 , 2 , . . . , r − 1 } : γ j ( n ) < λ } , we establish the mean value of U λ ( n ) and prove that U λ ( n ) /r ∼ λ for almost all integers n ≥ 2. We also examine the shifted prime version of these two results and study other related functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the consecutive prime divisors of an integer\",\"authors\":\"J. Koninck, Imre Kátai Imre Kátai\",\"doi\":\"10.7169/facm/1922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paul Erd˝os, Janos Galambos and others have studied the relative size of the consecutive prime divisors of an integer. Here, we further extend this study by examining the distribution of the consecutive neighbour spacings between the prime divisors p 1 ( n ) < p 2 ( n ) < · · · < p r ( n ) of a typical integer n ≥ 2. In particular, setting γ j ( n ) := log p j ( n ) / log p j +1 ( n ) for j = 1 , 2 , . . . , r − 1 and, for any λ ∈ (0 , 1], introducing U λ ( n ) := # { j ∈ { 1 , 2 , . . . , r − 1 } : γ j ( n ) < λ } , we establish the mean value of U λ ( n ) and prove that U λ ( n ) /r ∼ λ for almost all integers n ≥ 2. We also examine the shifted prime version of these two results and study other related functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Paul Erdõos、Janos Galambos等人研究了整数的连续素数的相对大小。在这里,我们通过检验典型整数n≥2的素数p1(n)本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the consecutive prime divisors of an integer
Paul Erd˝os, Janos Galambos and others have studied the relative size of the consecutive prime divisors of an integer. Here, we further extend this study by examining the distribution of the consecutive neighbour spacings between the prime divisors p 1 ( n ) < p 2 ( n ) < · · · < p r ( n ) of a typical integer n ≥ 2. In particular, setting γ j ( n ) := log p j ( n ) / log p j +1 ( n ) for j = 1 , 2 , . . . , r − 1 and, for any λ ∈ (0 , 1], introducing U λ ( n ) := # { j ∈ { 1 , 2 , . . . , r − 1 } : γ j ( n ) < λ } , we establish the mean value of U λ ( n ) and prove that U λ ( n ) /r ∼ λ for almost all integers n ≥ 2. We also examine the shifted prime version of these two results and study other related functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信