近似和边界分数Stieltjes常数

IF 0.5 Q3 MATHEMATICS
Ricky E. Farr, S. Pauli, F. Saidak
{"title":"近似和边界分数Stieltjes常数","authors":"Ricky E. Farr, S. Pauli, F. Saidak","doi":"10.7169/facm/1868","DOIUrl":null,"url":null,"abstract":"We discuss evaluating fractional Stieltjes constants γα(a), arising naturally from the Laurent series expansions of the fractional derivatives of the Hurwitz zeta functions ζ(α)(s, a). We give an upper bound for the absolute value of Cα(a) = γα(a) − log(a)/a and an asymptotic formula C̃α(a) for Cα(a) that yields a good approximation even for most small values of α. We bound |C̃α(a)| and based on this conjecture a tighter bound for |Cα(a)|","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Approximating and bounding fractional Stieltjes constants\",\"authors\":\"Ricky E. Farr, S. Pauli, F. Saidak\",\"doi\":\"10.7169/facm/1868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss evaluating fractional Stieltjes constants γα(a), arising naturally from the Laurent series expansions of the fractional derivatives of the Hurwitz zeta functions ζ(α)(s, a). We give an upper bound for the absolute value of Cα(a) = γα(a) − log(a)/a and an asymptotic formula C̃α(a) for Cα(a) that yields a good approximation even for most small values of α. We bound |C̃α(a)| and based on this conjecture a tighter bound for |Cα(a)|\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们讨论了分数Stieltjes常数γα(a)的估计,它自然地由Hurwitzζ函数的分数导数ζ(α)(s,a)的Laurent级数展开产生。我们给出了Cα(a)=γ。我们束缚了|C(a)|,并基于这个猜想得到了|Cα(a)|
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating and bounding fractional Stieltjes constants
We discuss evaluating fractional Stieltjes constants γα(a), arising naturally from the Laurent series expansions of the fractional derivatives of the Hurwitz zeta functions ζ(α)(s, a). We give an upper bound for the absolute value of Cα(a) = γα(a) − log(a)/a and an asymptotic formula C̃α(a) for Cα(a) that yields a good approximation even for most small values of α. We bound |C̃α(a)| and based on this conjecture a tighter bound for |Cα(a)|
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信