{"title":"近似和边界分数Stieltjes常数","authors":"Ricky E. Farr, S. Pauli, F. Saidak","doi":"10.7169/facm/1868","DOIUrl":null,"url":null,"abstract":"We discuss evaluating fractional Stieltjes constants γα(a), arising naturally from the Laurent series expansions of the fractional derivatives of the Hurwitz zeta functions ζ(α)(s, a). We give an upper bound for the absolute value of Cα(a) = γα(a) − log(a)/a and an asymptotic formula C̃α(a) for Cα(a) that yields a good approximation even for most small values of α. We bound |C̃α(a)| and based on this conjecture a tighter bound for |Cα(a)|","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Approximating and bounding fractional Stieltjes constants\",\"authors\":\"Ricky E. Farr, S. Pauli, F. Saidak\",\"doi\":\"10.7169/facm/1868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss evaluating fractional Stieltjes constants γα(a), arising naturally from the Laurent series expansions of the fractional derivatives of the Hurwitz zeta functions ζ(α)(s, a). We give an upper bound for the absolute value of Cα(a) = γα(a) − log(a)/a and an asymptotic formula C̃α(a) for Cα(a) that yields a good approximation even for most small values of α. We bound |C̃α(a)| and based on this conjecture a tighter bound for |Cα(a)|\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximating and bounding fractional Stieltjes constants
We discuss evaluating fractional Stieltjes constants γα(a), arising naturally from the Laurent series expansions of the fractional derivatives of the Hurwitz zeta functions ζ(α)(s, a). We give an upper bound for the absolute value of Cα(a) = γα(a) − log(a)/a and an asymptotic formula C̃α(a) for Cα(a) that yields a good approximation even for most small values of α. We bound |C̃α(a)| and based on this conjecture a tighter bound for |Cα(a)|