M. Yu, Qiang Li, Jie Yang, Yingxin Qiao, Jinyan Wang, Ru Huang, Xing Zhang
{"title":"Simulation on Low Energy Ion Implantation into Ge and SiGe With Molecular Dynamics Method","authors":"M. Yu, Qiang Li, Jie Yang, Yingxin Qiao, Jinyan Wang, Ru Huang, Xing Zhang","doi":"10.1109/IWCE.2009.5091152","DOIUrl":"https://doi.org/10.1109/IWCE.2009.5091152","url":null,"abstract":"Using binomial distribution, we have created a structure to describe Si 1-x Ge x substrate, so ion implantation into Ge and Si 1-x Ge x can be simulated based on Molecular dynamics method. ZBL potential is applied to describe interaction between implanted ion and target atoms. David Cai's electronic stopping power model is applied to calculate collision between implanted ion and electronics. The results of boron implantation into pure Ge and Si 1-x Ge x are compared with SIMS data. The phenomenon of fluence loss due to surface sputtering and backscattering is investigated. Factors affecting range profile and fluence loss including Ge fraction and implant tilt is also presented in this paper.This electronic document is a \"live\" template. The various components of your paper [title, text, heads, etc.] are already defined on the style sheet, as illustrated by the portions given in this document.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115148559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correlation Effects in Silicon Nanowire MOSFETs","authors":"Changsheng Li, M. Bescond, M. Lannoo","doi":"10.1109/IWCE.2009.5091100","DOIUrl":"https://doi.org/10.1109/IWCE.2009.5091100","url":null,"abstract":"We report a numerical study of the self-energy correction due to correlation effects from dynamic screening of the moving electron in silicon nanowire transistors. This many-body effect, which is not included in the usual Hartree approximation, is then incorporated self-consistently into a non-equilibrium Green's function (NEGF) code. The results pinpoint the importance of dielectric confinement whose magnitude can not be neglected compared to its quantum counterpart in ultimate nanowire transistors.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114013172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Full-3D Real-Space Simulation of Surface-Roughness Effects in Double-Gate MOSFETs","authors":"C. Buran, M. Pala, M. Mouis, S. Poli","doi":"10.1109/IWCE.2009.5091115","DOIUrl":"https://doi.org/10.1109/IWCE.2009.5091115","url":null,"abstract":"We present numerical simulations of double-gate (DG)-MOSFETs based on a full-3D self-consistent Poisson-Schrodinger algorithm within the real-space non equilibrium Green's function (NEGF) approach. We include a geometrical description of surface roughness (SR) via an exponential auto-correlation law. In order to simulate rough planar structures we adopt periodic boundary conditions along one of the transverse directions. Transfer characteristics are computed for different realistic values of the root mean square (RMS) of spatial fluctuations whereas SR-limited mobility, which is extracted from effective mobility after subtraction of the ballistic component, presents a non monotonic dependence on the inversion charge density.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122260604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of the FIND Algorithm to Compute the Inverse of a Sparse Matrix","authors":"S. Li, Eric F Darve","doi":"10.1109/IWCE.2009.5091136","DOIUrl":"https://doi.org/10.1109/IWCE.2009.5091136","url":null,"abstract":"The FIND algorithm is a fast algorithm designed to calculate entries of the inverse of a sparse matrix. Such calculation is critical in many applications, e.g., quantum transport in nano-devices. For a 2D device discretized as N times N mesh, the best known algorithms have a running time of O(N 4 ), whereas FIND only requires O(N 3 ), although with a larger constant factor. By exploiting the extra sparsity and symmetry, the size of the problem where FIND becomes faster than others may decrease from a 130 times 130 mesh down to a 40 times 40 mesh. This improvement will make the optimized FIND algorithm appealing to small problems as well, thus becoming competitive for most real applications.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114466511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}