Mengyang Hou , Chengyuan Lin , Lin Zhu , Zhaoxiang Bian
{"title":"Phenolics from Chaenomeles speciosa leaves: Ionic liquid-based ultrasound-assisted extraction, adsorptive purification, UPLC–QqQ–MS/MS quantification, and bioactivity assessment","authors":"Mengyang Hou , Chengyuan Lin , Lin Zhu , Zhaoxiang Bian","doi":"10.1016/j.ultsonch.2025.107282","DOIUrl":"10.1016/j.ultsonch.2025.107282","url":null,"abstract":"<div><div>This study aimed to enhance the valorization of <em>Chaenomeles speciosa</em> leaves as a sustainable source of bioactive phenolics. An innovative ionic liquid-based ultrasound-assisted extraction (IL-UAE) method was developed for extracting phenolic compounds. Among 10 structurally diverse ILs, [BMIM]Br demonstrated superior extraction performance. Using a combination of single-factor design and response surface methodology (RSM), the optimal parameters for IL-UAE were determined to be the [BMIM]Br concentration of 1.33 mol/L, ultrasonic power of 380 W, extraction time of 10 min, and liquid-to-solid ratio of 22 mL/g. Under these conditions, the yield of <em>C. speciosa</em> leaves total phenolics (CSL-TP) was 78.14 ± 0.35 mg/g, which was substantially higher than those obtained via conventional heat reflux and UAE. After extraction, the microstructures of <em>C. speciosa</em> leaves were examined using scanning electron microscopy (SEM), which confirmed the effectiveness of IL-UAE. Subsequently, NKA-II resin column chromatography was developed to effectively purify crude CSL-TP extracts, guided by leakage and elution curve evaluations, yielding phenolic extracts with a purity of 75.40 % ± 1.93 %. A UPLC–QqQ–MS/MS method was developed for the quantitative analysis of nine major phenolics in purified CSL-TP extracts. Furthermore, bioactivity assessments demonstrated that the purified CSL-TP extracts efficiently scavenged radicals and effectively inhibited the proliferation of HCT-116 and HT-29 cell lines. These results highlight the potential of <em>C. speciosa</em> leaves as a valuable resource for the pharmaceutical and food industries, paving the way for the development of innovative therapeutic products and functional foods.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107282"},"PeriodicalIF":8.7,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Fernando Martínez , Ana M. Escolar , Rosario Pardo-Botello , Carlos J. Durán-Valle , Marta Adame-Pereira , David Fernandez Rivas , Pedro Cintas
{"title":"Tuning synthesis and sonochemistry forges learning and enhances educational training: Protection of 1,3-diols under heterogeneous catalysis as sustainable case study","authors":"R. Fernando Martínez , Ana M. Escolar , Rosario Pardo-Botello , Carlos J. Durán-Valle , Marta Adame-Pereira , David Fernandez Rivas , Pedro Cintas","doi":"10.1016/j.ultsonch.2025.107274","DOIUrl":"10.1016/j.ultsonch.2025.107274","url":null,"abstract":"<div><div>This research article describes the thermal and sonochemical enhancements of 1,3-diol protection, via acetal formation, catalyzed by a biomass-derived heterogeneous catalyst. This investigation was also conducted under the framework of a postgraduate program in green chemistry, and the application of ultrasonic activation represented an opportunity to expose the field to junior colleagues unaware of sonochemistry. Accordingly, we show not only a facile and high-yielding synthetic transformation, but also the pluses of performing a parallel protocol using low-frequency ultrasound, which provided new learning tools and skills in context. The main role of sound waves can be associated to enhanced mass transfer of the heterogeneous reaction (<em>false sonochemistry</em>). Acoustic energy was delivered into the reagents and solvent using so-called <em>cavitation intensifying bags</em> (CIB). The micropitted polymeric material enabled a greater focused radiation that proved to be highly reproducible at 25 °C and led to reaction completion much faster than the conventional external heating. Furthermore, sonication fine-tunes selectivity in ketal formation, as witnessed by a facile synthesis of <em>solketal</em>, a green solvent obtained by acetalization of glycerol. The pedagogical benefits of conveying education in sonochemistry are outlined, alongside the catalyst characterization of the ultrasound-driven reaction. Our ambition is to stimulate similar pursuits in synthesis and catalysis at other laboratories and educational institutions.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107274"},"PeriodicalIF":8.7,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative evaluation of ultrasound-assisted extraction with other green extraction methods for sustainable recycling and processing of date palm bioresources and by-products: A review of recent research","authors":"Ume Roobab , Rana Muhammad Aadil , Shyam Sreedhara Kurup , Sajid Maqsood","doi":"10.1016/j.ultsonch.2025.107252","DOIUrl":"10.1016/j.ultsonch.2025.107252","url":null,"abstract":"<div><div>The global food waste crisis has significantly contributed to climate change, water pollution, and land degradation. Date palm waste, including seeds, fronds, and fruit pulp residues, represents a valuable source of bioactive compounds with potential applications in food, pharmaceutical, and cosmetic industries. This study presents a comparative evaluation of ultrasound-assisted extraction and other novel extraction techniques, such as pressure-based extraction, pulsed electric fields, microwaves, and natural deep eutectic solvents, for recovering bioactive compounds from date palm waste. These methods were assessed for their efficiency and sustainability in extracting antioxidants and phenolic compounds, and other bioactives while minimizing the use of harmful solvents and high temperatures. Critical factors, such as extraction time, solvent type, temperature, and pressure were crucial indicators to achieve higher extraction efficiencies with lower environmental impacts compared to traditional methods. Additionally, combining these techniques may further optimize the extraction process. This study contributes to the development of sustainable strategies for valorizing date palm byproducts and promoting a circular economy in the food industry. By developing sustainable extraction methods that minimize environmental impacts, this research directly supports the United Nations’ Sustainable Development Goals, particularly SDG 12 (Responsible Consumption and Production) and SDG 13 (Climate Action).</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107252"},"PeriodicalIF":8.7,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143463335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrasonic-assisted extraction (UAE) of Javanese turmeric rhizomes using natural deep eutectic solvents (NADES): Screening, optimization, and in vitro cytotoxicity evaluation","authors":"Donna Maretta Ariestanti , Abdul Mun’im , Pietradewi Hartrianti , Basmah Nadia , Erika Chriscensia , Shereen Angelina Rattu , Redhalfi Fadhila , Anastacia Harianto , Adelina Simamora , Delly Ramadon , Richard Johari James , Fadlina Chany Saputri , Mitsuyasu Kato , Meidi Utami Puteri","doi":"10.1016/j.ultsonch.2025.107271","DOIUrl":"10.1016/j.ultsonch.2025.107271","url":null,"abstract":"<div><div>Javanese turmeric (<em>Curcuma xanthorrhiza</em> Roxb.) is known for its diverse pharmacological activities due to its rich phytoconstituents, including curcuminoids and xanthorrhizol. Typically, these compounds are extracted using organic solvents, which pose health and environmental risks. Therefore, safer and more environmentally friendly green extraction methods are being developed. This study investigated the effect of ultrasound-assisted extraction (UAE) combined with natural deep eutectic solvents (NADES) based on choline chloride and organic acids (lactic, malic, and citric acid) to find the best combination for extracting curcuminoids and xanthorrhizol from Javanese turmeric. Results showed that UAE using choline chloride and malic acid (1:1) (ChCl-MA) yielded the best results. The Box–Behnken Design optimized water addition, solvent-to-powder ratio, and extraction time, with optimal conditions being 25 % water addition, a 20 mL/g ratio, and a 15-minute extraction time. This method yielded 4.58 mg/g of curcuminoids and 12.93 mg/g of xanthorrhizol. Furthermore, the ChCl-MA NADES with UAE extraction showed more cytoselective activity towards the HeLa cancer cell line compared to the non-cancer HaCaT cell line. In contrast, traditional ethanol extraction was non-selective, as indicated by similar cell viability reductions in both HeLa and HaCaT cells at 6.25 ppm. Collectively, this study is the first to report the optimal NADES combination with UAE, based on salts and organic acids, for the extraction of Javanese turmeric rhizomes with selective cytotoxic effects against cancer cells. These findings may contribute to the development of novel, naturally derived anticancer agents using green extraction techniques.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107271"},"PeriodicalIF":8.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Zhang , Tingting Wang , Xingyong Huang , Peng Wu , Lufan Shen , Yuanyuan Yang , Wenyu Wan , Siyu Sun , Zhan Zhang
{"title":"Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases","authors":"Kai Zhang , Tingting Wang , Xingyong Huang , Peng Wu , Lufan Shen , Yuanyuan Yang , Wenyu Wan , Siyu Sun , Zhan Zhang","doi":"10.1016/j.ultsonch.2025.107270","DOIUrl":"10.1016/j.ultsonch.2025.107270","url":null,"abstract":"<div><div>Sterile and infection-associated inflammatory diseases are becoming increasingly prevalent worldwide. Conventional drug therapies often entail significant drawbacks, such as the risk of drug overdose, the development of drug resistance in pathogens, and systemic adverse reactions, all of which can undermine the effectiveness of treatments for these conditions. Nanomaterials (NMs) have emerged as a promising tool in the treatment of inflammatory diseases due to their precise targeting capabilities, tunable characteristics, and responsiveness to external stimuli. Ultrasound (US), a non-invasive and effective treatment method, has been explored in combination with NMs to achieve enhanced therapeutic outcomes. This review provides a comprehensive overview of the recent advances in the use of US-mediated NMs for treating inflammatory diseases. A comprehensive introduction to the application and classification of US was first presented, emphasizing the advantages of US-mediated NMs and the mechanisms through which US and NMs interact to enhance anti-inflammatory therapy. Subsequently, specific applications of US-mediated NMs in sterile and infection-associated inflammation were summarized. Finally, the challenges and prospects of US-mediated NMs in clinical translation were discussed, along with an outline of future research directions. This review aims to provide insights to guide the development and improvement of US-mediated NMs for more effective therapeutic interventions in inflammatory diseases.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107270"},"PeriodicalIF":8.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junmei Liu , Yingmei Wu , Fang Geng , Xin Li , Qun Huang , Xiefei Li , Bei Xue , Erhao Zhang
{"title":"Ultrasound synergized saline thawing reduces quality deterioration of Tibetan pork during thawing","authors":"Junmei Liu , Yingmei Wu , Fang Geng , Xin Li , Qun Huang , Xiefei Li , Bei Xue , Erhao Zhang","doi":"10.1016/j.ultsonch.2025.107267","DOIUrl":"10.1016/j.ultsonch.2025.107267","url":null,"abstract":"<div><div>Meat quality degradation induced by highland transport emphasises the importance of efficient thawing for Tibetan pork quality. The objective of this study was to examine the impact of various thawing methods on the quality characteristics, protein oxidation, and nutrient composition of Tibetan pork. Ultrasound synergized saline thawing (UST) significantly enhanced tenderness and reduced the oxidation degree of myofibrillar protein, improving the Tibetan pork quality. Compared to ultrasound thawing (UT) and saline thawing (ST), UST not only minimized cooking loss (18.44 %) but also restrained the conversion of bound water and fixed water into free water. Furthermore, the unfolding and depolymerization of MP increased surface hydrophobicity (47.96 a.u) and active sulfhydryl content, which stabilized the secondary and tertiary structure of MP. UST also effectively inhibited the decomposition of amino acid metabolites, lipid oxidation, the synthesis of unsaturated fatty acids, and the degradation of free amino acids during thawing. In conclusion, UST accelerated the thawing process while delaying the oxidation of fats and proteins, thus better maintaining the overall quality of Tibetan pork.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107267"},"PeriodicalIF":8.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiying Shan , Xingbo Qin , Hang Li , Yanghui Xiang , Wangqing Wu
{"title":"Ultrasonic plasticizing micro-injection molding of UHMWPE based on new process flow and ultrasonic system structure to improve mechanical properties and process stability","authors":"Zhiying Shan , Xingbo Qin , Hang Li , Yanghui Xiang , Wangqing Wu","doi":"10.1016/j.ultsonch.2025.107272","DOIUrl":"10.1016/j.ultsonch.2025.107272","url":null,"abstract":"<div><div>Ultrasonic plasticizing micro-injection molding (UPMIM) technology has been considered as an effective means of UHMWPE molding. However, the cumbersome forming process, the degradation of mechanical properties and the poor consistency of molding and property seriously restrict further application. In this study, a new ultrasonic molding method of UHMWPE micro-parts is proposed. Firstly, the UHMWPE ultrasonic plasticizing material was prepared simply and quickly by ultrasonic technology. Secondly, the UHMWPE tensile samples were molded by an innovative UPMIM structure with a large diameter ratio of the ultrasonic sonotrode to plasticizing cavity. Then, the optimum molding process parameters were obtained by grey relational analysis (GRA). After that, the influence of system stability and process parameters on mechanical properties and consistency was studied by contribution analysis. Finally, compared with the typical UHMWPE molding method (compression molding) and the existing research results, the influence and feasibility of the process are analyzed in detail. The results show that the ultrasonic technique can effectively prepare UHMWPE tablets with almost unchanged properties (molecular weight decreased by 0.31 %). A large diameter ratio of the ultrasonic sonotrode to plasticizing cavity can expand the process window for complete filling of UHMWPE tensile samples, and the filling stability of the ultrasonic system is increased by about 1.8 times. Meanwhile, this ultrasonic system structure can also inhibit the oxidative degradation of UHMWPE, reduce the break of molecular chain. The elongation at break (EB) of tensile samples increased from 5.56 % to 12.2 %, while the tensile strength (TS) decreases from 136.54 % to 68.11 %. Moreover, the contribution of process parameters to the mechanical properties and consistency for UHMWPE tensile samples is 55.97 %–88.37 %, while the contribution of ultrasonic system stability is 11.63 %–44.03 %.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107272"},"PeriodicalIF":8.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Zhou , Yushen Feng , Wenhao Zhou , Mengying Zhang , Fugui Liu , Jian Mao , Dajun Wu , Yunpeng Cao , Yigao Wu , Lan Jiang
{"title":"Ultrasound-assisted metabolite detection in different extraction processes of Bletilla striata and bitter metabolite detection","authors":"Juan Zhou , Yushen Feng , Wenhao Zhou , Mengying Zhang , Fugui Liu , Jian Mao , Dajun Wu , Yunpeng Cao , Yigao Wu , Lan Jiang","doi":"10.1016/j.ultsonch.2025.107266","DOIUrl":"10.1016/j.ultsonch.2025.107266","url":null,"abstract":"<div><div><em>Bletilla striata</em>, a medicinal orchidaceous plant, is recognized for its significant pharmacological value. However, the lack of comparative metabolomic data across different extraction methods for analyzing its bioactive components has significantly undervalued the application potential of <em>B. striata</em> in the traditional Chinese medicine market. Using six ultrasound-assisted extraction methods and UPLC-MS/MS, this study identified 1,945 metabolites in <em>B. striata</em> extracts. The dominant categories were lipids (51.35%), flavonoids (18.00%), and phenolic acids (12.51%). KEGG analysis revealed alterations in flavonoids and isoflavonoids biosynthesis pathways. Thirteen bitter metabolites, including cinnamic acid, were identified in <em>B. striata</em> tubers, underscoring their potential pharmacological applications, such as anti-inflammatory, antioxidant and antibacterial activities. Optimizing different extraction methods can better preserve the bioactive components of <em>B. striata</em> extracts, thereby enhancing its potential applications in the food and pharmaceutical industries.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107266"},"PeriodicalIF":8.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Zhao , Xiaoqian Hu , Jian Ren , Chunli Song , Yang Sun
{"title":"Ultrasound-assisted preparation of wax-based composite gelator: Structural characterisation, in vitro antioxidant activity and application in oleogels","authors":"Yue Zhao , Xiaoqian Hu , Jian Ren , Chunli Song , Yang Sun","doi":"10.1016/j.ultsonch.2025.107253","DOIUrl":"10.1016/j.ultsonch.2025.107253","url":null,"abstract":"<div><div>In recent years, the development of zero-trans fatty acid products instead of traditional hydrogenated and high-unsaturated fatty acid animal and vegetable oils has been an increasing interest in the field of food. This paper focused on the ultrasound-assisted preparation of a novel wax-based composite gelator loaded with natural antioxidant to prepare oleogels with good storage oxidation stability. The preparation of the wax-based composite gelator was to first form the anthocyanin (ACNs) and soyabean lecithin (SL) complex, and then homogenized with beeswax (BW). A complex maximum association efficiency of 86.43 % was achieved when the combination was performed for 50 min at 40 °C and 270 W ultrasonic power, and exhibited higher lipophilicity. Moreover, structural analysis results revealed that ultrasonic-assisted treatment accelerated the formation of ACNs and SL ultrasonic complexes (ASUC) by the hydrogen bonding. The results of gelators indicated the ASUC-BW composite gelator showed the highest ACNs embedding rate of 72.91 % and better antioxidant activity. XRD analysis and thermogravimetric analysis demonstrated that ASUC-BW composite gelator maintained β′ crystal structure and had higher thermal stability due to physical interactions between ASUC and beeswax. Accelerated storage tests at 60 °C revealed that oleogels prepared by ASUC-BW composite gelator (ALO) had significantly lower peroxide values (PV) (14.0 mmol/kg) and thiobarbituric acid reactive substances (TBARS) (1.8 mg/kg). Overall, this paper demonstrates ultrasonic-assisted treatment is an effective way to improve dispersion and availability of ANCs in food rich in oil and can be further applied to developing novel high stability fatty food systems.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107253"},"PeriodicalIF":8.7,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of sonochemical and sonophysical activity under various geometric conditions in 28 kHz Double-Bath sonoreactors","authors":"Mireu Song , Dukyoung Lee , Younggyu Son","doi":"10.1016/j.ultsonch.2025.107263","DOIUrl":"10.1016/j.ultsonch.2025.107263","url":null,"abstract":"<div><div>Sonochemical and sonophysical activities were investigated under various geometric conditions using 28 kHz double-bath-type sonoreactors. Sonochemical activity was quantified using KI dosimetry (triiodide ion concentration), while sonophysical activity was measured via lightweight expanded clay aggregate (LECA) desorption tests (turbidity). Thirty-five different geometric conditions were tested, comprising seven distances between the sonoreactor bottom and vessel bottom (L<sub>2</sub>) and five water levels (L<sub>3</sub>). The optimal conditions for sonochemical activity [(L<sub>2</sub>/L<sub>3</sub>, unit: mm): 70/76, 90/116, 70/116, 110/146, and 70/96] and sonophysical activity [(L<sub>2</sub>/L<sub>3</sub>, unit: mm): 30/78, 70/88, 150/168, 30/68, and 30/38] did not match, and no conditions showing high values in both activities were found. The presence of a thin-walled vessel did not affect ultrasound transmission. However, the presence of LECAs caused a large attenuation of ultrasound and the formation of different cavitational active zones in the vessel. This was identified as the main reason for the mismatch in optimal geometric conditions for sonochemical and sonophysical activities. The sonochemical activity could be enhanced by the presence of LECAs under conditions; however, the enhanced sonochemical activity was much lower than the five highest sonochemical activities. In addition, the movement of LECAs induced by ultrasound irradiation significantly enhanced the sonophysical activity.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107263"},"PeriodicalIF":8.7,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}