{"title":"Novel electrochemiluminescence platform utilizing AuNPs@Uio-66-NH<sub>2</sub> bridged luminescent substrates and aptamers for the detection of pesticide residues in Chinese herbal medicines.","authors":"Chengqiang Li, Haifang Wang, Jiashuai Sun, Peisen Li, Jiwei Dong, Jingcheng Huang, Haowei Dong, Lingjun Geng, Zhiping Yu, Pengwei Zhang, Wei Chen, Yemin Guo, Xia Sun","doi":"10.1016/j.talanta.2024.126924","DOIUrl":"10.1016/j.talanta.2024.126924","url":null,"abstract":"<p><p>A large number of Chinese herbal medicines (CHMs) are included in daily recipes, but their pesticide residues have aroused more and more concerns. In this paper, an electrochemiluminescence aptasensor was constructed for the trace detection of acetamiprid (ACE) in Angelica sinensis and Lycium barbarum. Possessing a large specific surface area, UiO-66 was modified with amino groups to improve biocompatibility, and the addition of AuNPs allowed UiO-66-NH<sub>2</sub> to catalyze the formation of excited states of luminescent molecules (TPrA<sup>⁎</sup>; Ru(bpy)<sub>3</sub><sup>2+</sup><sup>⁎</sup>), and AuNPs@UiO-66-NH<sub>2</sub> was used to bridge the aptamer (Au-S) and luminescent substrate (peptide bond). The conventional luminescent reagent Ru(bpy)<sub>3</sub><sup>2+</sup> was doped with multi-walled carbon nanotubes (MWCNTs) to obtain a more powerful and stable light signal. After optimizing the experimental parameters, the aptasensor could give results in 10 min with a detection range from 1×10<sup>-2</sup>-1×10<sup>4</sup> nM and a lower limit of detection (LOD) of 0.8 pM. The LOD of the study was at least one order of magnitude lower than that of the fluorescence detection method. Furthermore, the accuracy of the aptasensor was validated for spiked recovery experiments.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126924"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-01-01Epub Date: 2024-09-23DOI: 10.1016/j.talanta.2024.126904
Chenrui Zhan, Zisheng Ju, Binrui Xie, Jiwen Chen, Qiang Ma, Ming Li
{"title":"Signal processing for miniature mass spectrometer based on LSTM-EEMD feature digging.","authors":"Chenrui Zhan, Zisheng Ju, Binrui Xie, Jiwen Chen, Qiang Ma, Ming Li","doi":"10.1016/j.talanta.2024.126904","DOIUrl":"10.1016/j.talanta.2024.126904","url":null,"abstract":"<p><p>Miniature mass spectrometers exhibit immense application potential in on-site detection due to their small size and low cost. However, their detection accuracy is severely affected by factors such as sample pre-processing and environmental conditions. In this study, we propose a data processing method based on long short-term memory-ensemble empirical mode decomposition (LSTM-EEMD) to improve the quality of on-site detection data from miniature mass spectrometers. The EEMD method can clearly decompose the different physical feature components in the small-scale spectrometer signals, while the LSTM method can adaptively learn the internal feature relationships of the signals. Thus, by combining the two, the parameters for the EEMD signal reconstruction can be optimized in an adaptive manner, obtaining the optimized coefficients. Compared to the previous EEMD feature enhancement approach, the LSTM-EEMD method not only significantly improves the coefficient of determination (R<sup>2</sup>) and relative standard deviation (RSD) of the data, enhancing the linear range, but also achieves fully adaptive processing throughout the workflow, greatly boosting the efficiency. By leveraging a miniature mass spectrometer, data for N-acetyl-l-aspartic acid (NAA), 2-Hydroxyglutarate (2-HG), and γ-Aminobutyric acid (GABA) in actual blood samples have been obtained. The experimental results demonstrate that the LSTM-EEMD method can markedly enhance the accuracy and usability of the biological sample data in practical testing, providing new perspectives and possibilities for research and applications in the relevant domain.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126904"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-01-01Epub Date: 2024-10-16DOI: 10.1016/j.talanta.2024.127053
Aya A Abdella, Eman A Elshenawy
{"title":"A spatial hue smartphone-based colorimetric detection and discrimination of carmine and carminic acid in food products based on differential adsorptivity.","authors":"Aya A Abdella, Eman A Elshenawy","doi":"10.1016/j.talanta.2024.127053","DOIUrl":"10.1016/j.talanta.2024.127053","url":null,"abstract":"<p><p>A novel, portable, disposable, affordable, and environmentally friendly paper-based analytical device (PAD) was designed for on-site determination of carmine and carminic acid. This platform utilized paper test strips with a chitosan coating as an adsorption layer, which was characterized using scanning electron microscope, energy-dispersive X-ray analysis, and water contact angle measurement. Carmine and carminic acid could be efficiently adsorbed on chitosan-coated paper test strips, producing distinct colors that could be captured using a smartphone camera without the need for an elution step. Notably, by utilizing the Hue component of the HSL model, it was possible to differentiate between carmine and carminic acid, confirming their presence in a sample. Furthermore, the color saturation intensity changed in a concentration-dependent manner, allowing for the determination of carmine and carminic acid concentrations in the ranges of 200-800 μg/mL and 20-100 μg/mL, respectively. Additionally, the created test strip could be used to measure the percentage of carminic acid in the presence of carmine. The developed PAD enabled the quantification of carmine in various food samples without the need for reagents or complex equipment. The environmental impact of this method was found to be positive based on assessments using GAPI and AGREE tools.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"282 ","pages":"127053"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-01-01Epub Date: 2024-10-05DOI: 10.1016/j.talanta.2024.126985
Giorgia La Barbera, Marshal Spenser Shuler, Søren Hammershøj Beck, Per Holger Ibsen, Lars Joachim Lindberg, John Gásdal Karstensen, Lars Ove Dragsted
{"title":"Development of an untargeted DNA adductomics method by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry.","authors":"Giorgia La Barbera, Marshal Spenser Shuler, Søren Hammershøj Beck, Per Holger Ibsen, Lars Joachim Lindberg, John Gásdal Karstensen, Lars Ove Dragsted","doi":"10.1016/j.talanta.2024.126985","DOIUrl":"10.1016/j.talanta.2024.126985","url":null,"abstract":"<p><p>Genotoxicants originating from inflammation, diet, and environment can covalently modify DNA, possibly initiating the process of carcinogenesis. DNA adducts have been known for long, but the old methods allowed to target only a few known DNA adducts at a time, not providing a global picture of the \"DNA adductome\". DNA adductomics is a new research field, aiming to screen for unknown DNA adducts by high resolution mass spectrometry (HRMS). However, DNA adductomics presents several analytical challenges such as the need for high sensitivity and for the development of effective screening approaches to identify novel DNA adducts. In this work, a sensitive untargeted DNA adductomics method was developed by using ultra-high performance liquid chromatography (UHPLC) coupled via an ESI source to a quadrupole-time of flight mass spectrometric instrumentation. Mobile phases with ammonium bicarbonate gave the best signal enhancement. The MS capillary voltage, cone voltage, and detector voltage had most effect on the response of the DNA adducts. A low adsorption vial was selected for reducing analyte loss. Hybrid surface-coated analytical columns were tested for reducing adsorption of the DNA adducts. The optimized method was applied to analyse DNA adducts in calf thymus, cat colon, and human colon DNA by performing a MS<sup>E</sup> acquisition (all-ion fragmentation acquisition) and screening for the loss of deoxyribose and the nucleobase fragment ions. Fifty-four DNA adducts were tentatively identified, hereof 38 never reported before. This is the first untargeted DNA adductomics study on human colon tissue, and one of the few untargeted DNA adductomics studies in the literature reporting the identification of such a high number of unknowns. This demonstrates promising results for the application of this sensitive method in future human studies for investigating novel potential cancer-causing factors.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"282 ","pages":"126985"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-01-01Epub Date: 2024-09-19DOI: 10.1016/j.talanta.2024.126920
Zan Gong, Panpan Yuan, Yuqing Gan, Xi Long, Zhiwei Deng, Yalan Tang, Yanjing Yang, Shian Zhong
{"title":"A one-pot isothermal Fluorogenic Mango II arrays-based assay for label-free detection of miRNA.","authors":"Zan Gong, Panpan Yuan, Yuqing Gan, Xi Long, Zhiwei Deng, Yalan Tang, Yanjing Yang, Shian Zhong","doi":"10.1016/j.talanta.2024.126920","DOIUrl":"10.1016/j.talanta.2024.126920","url":null,"abstract":"<p><p>The capability to detect a small number of miRNAs in clinical samples with simplicity, selectivity, and sensitivity is immensely valuable, yet it remains a daunting task. Here, we described a novel Mango II aptamers-based sensor for the one-pot, sensitive and specific detection of miRNAs. Target miRNA-initiated mediated catalyzed hairpin assembly (CHA) would allow for the production of plenty of DNA duplexes and the formation of the complete T7 promoter, motivating the rolling circle transcription (RCT). Then, the subsequent RCT process efficiently generates a huge number of repeating RNA Mango II aptamers, brightened by the incorporation of fluorescent dye TO1-B for miRNA quantification, realizing label-free and high signal-to-background ratio. Moreover, this assay possesses a remarkable ability to confer high selectivity, enabling the distinction of miRNAs among family members with mere 1- or 2- nucleotide (nt) differences. By employing the proposed assay, we have successfully achieved a sensitive evaluation of miR-21 content in diverse cell lines and clinical serum samples. This offers a versatile approach for the sensitive assay of miRNA biomarkers in molecular diagnosis.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126920"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-01-01Epub Date: 2024-09-20DOI: 10.1016/j.talanta.2024.126909
Qing Liu, Si Chen, Yiming Nie, Qian Li, Fang Chen
{"title":"Determination of 4-n-butylresorcinol by fluorescence derivatization based on dopamine.","authors":"Qing Liu, Si Chen, Yiming Nie, Qian Li, Fang Chen","doi":"10.1016/j.talanta.2024.126909","DOIUrl":"10.1016/j.talanta.2024.126909","url":null,"abstract":"<p><p>4-n-butylresorcinol (4nBR) is a frequently utilized as whitening ingredients in skincare cosmetics. Compared with other whitening ingredients, it can effectively inhibit tyrosinase with lower toxicity and superior inhibition efficacy. Under alkaline conditions, an induced oxidative coupling reaction can occur between 4nBR and dopamine (DA) to generate strong fluorescent substance azamonardine with an intense emission band centering at 476 nm when excited at 440 nm. This phenomenon can be used to establish a fluorescence analysis method for 4nBR. The results indicated that the linear range of the method was 1.0-24.0 nmol L<sup>-1</sup>, and the detection limit was as low as 0.25 nmol L<sup>-1</sup>. The method showed high sensitivity, good selectivity, mild experimental conditions and low cost. The proposed method was successfully used to detect 4nBR in cosmetics, and the results were consistent with those of HPLC. The spiking recoveries were between 98.2% and 108 %.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126909"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Valence fixable ferrozine gel rod combined with smartphone for facile determination of redox-active Fe<sup>2+</sup> in environmental water.","authors":"Peng'an Zhu, Jiangle Zhang, Jingjing Jin, Xing Huang, Xinfeng Zhang","doi":"10.1016/j.talanta.2024.126933","DOIUrl":"10.1016/j.talanta.2024.126933","url":null,"abstract":"<p><p>Ferrous ion (Fe<sup>2+</sup>) can indicate the redox situation of water and also plays an important role in maintaining the ecological balance of water bodies. However, due to the redox-active property of Fe<sup>2+</sup>, it is still a huge challenge to sensitively and accurately determine Fe<sup>2+</sup> especially in interstitial water. Herein, we prepared a ferrozine gel rod for valence fixation during sampling and subsequent smartphone-based detection of Fe<sup>2+</sup>. The electrode potential of the redox pair can be varied through the formation of Fe<sup>2+</sup>-ligand complexes, and when E<sub>complex</sub> was higher than [Formula: see text] , the oxidation of Fe<sup>2+</sup> by O<sub>2</sub> was hindered, thus achieving the valence fixation of Fe<sup>2+</sup>. Six ligands were screened, and it was found that ferrozine could effectively increase the redox potential after complexing with Fe<sup>2+</sup>, and also exhibits an obvious color change while fixing the valence of Fe<sup>2+</sup>. To facilitate Fe<sup>2+</sup> detection, a cross-linked porous polymer gel rod prepared by acrylamide and sodium alginate was used to encapsulate the ferrozine molecules. The ferrozine gel rod enabled fixation the valence of Fe<sup>2+</sup> longer than 30 days, and the resulted purple-red color was pictured and analyzed by a smartphone. Ultimately, the developed ferrozine gel rod sensing system was able to achieve sensitive and linear detection of Fe<sup>2+</sup> in the range of 1-200 μM with the limit of detection as low as 0.33 μM, and it also exhibited excellent selectivity and anti-interference ability. The accuracy and reliability of the method was verified by the determination of Fe<sup>2+</sup> in spiked water samples and certified standard reference water samples. Finally, the ferrozine gel rod sensing system was successfully applied to in-situ detection of Fe<sup>2+</sup> in interstitial water, overlying water and upper water of lake and river. This facile system that enabled valence fixation and fast detection is promising for detection of Fe<sup>2+</sup> in environmental waters.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126933"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of polyoxometalate dispersed cobalt oxide nanowires for electrochemically monitoring superoxide radicals from Hela cell mitochondria.","authors":"Chaoyao Geng, Xiujuan Zhang, Xinyao Zhu, Bingjie Li, Zhenhua Ren, Xiuhua Liu, Jadranka Travas-Sejdic, Xiaoqiang Liu","doi":"10.1016/j.talanta.2024.127037","DOIUrl":"10.1016/j.talanta.2024.127037","url":null,"abstract":"<p><p>An ultrasensitive electrochemical sensor is constructed by electrostatically adsorbing negatively charged hourglass-shape Cu-Polyoxometalate (POM) onto a positively charged CoO nanowires modified carbon cloth. The petaloid CoO nanowires have a large specific surface area that can well disperse open-structured Cu-POM to form Cu-POM@CoONWs@CC, which can maximumly expose catalytic active centers (Co<sup>2+</sup> and Cu<sup>2+</sup>) and accelerate mass/charge transfer. In addition to the above advantages, the excellent electron exchange ability of Cu-POM and good conductivity of CoONWs@CC endow the sensor with good detection capability to H<sub>2</sub>O<sub>2</sub> including a linear detection range of 0.05-1.4 μA μM<sup>-1</sup>, a low detection limit of 0.022 μM, high sensitivity of 110.48 μA μM<sup>-1</sup>, good selectivity and long-term stability. Due to the fast transformation of superoxide anion (O<sub>2</sub><sup>∙-</sup>) to H<sub>2</sub>O<sub>2</sub>, the sensor can indirectly monitor the electron leakage resulting in the formation of O<sub>2</sub><sup>∙-</sup> via detecting H<sub>2</sub>O<sub>2</sub>. Afterwards, Hela cell mitochondria were extracted from the living cells that cultured with different mitochondrial inhibitors and the release of O<sub>2</sub><sup>∙-</sup> from the corresponding mitochondrial complexes was monitored by the sensor. Through comparing the current signals, we determined that complex I is probably the main electron leakage site. This work could provide meaningful information for the diagnosis of certain oxidative stress diseases.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"282 ","pages":"127037"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface acoustic wave platform integrated with ultraviolet activated rGO-SnS<sub>2</sub> nanocomposites to achieve ppb-level dimethyl methylphosphonate detection at room-temperature.","authors":"Jinbo Zhang, Jian Zhou, Hui Chen, Yihao Guo, Qikun Tian, Yanhong Xia, Guangzhao Qin, Jianfei Xie, Yongqing Fu","doi":"10.1016/j.talanta.2024.127063","DOIUrl":"10.1016/j.talanta.2024.127063","url":null,"abstract":"<p><p>Dimethyl methylphosphonate (DMMP) is commonly used as an alternative for demonstrating to detect sarin, which is one of the most toxic but odorless chemical nerve agents. Among various types of DMMP sensors, those utilizing surface acoustic wave (SAW) technology provide notable advantages such as wireless/passive monitoring, digital output, and a compact, portable design. However, key challenges for SAW-based DMMP sensors operated at room temperature lies in simultaneous enhancement of sensitivities and reduction of detection limits. In this study, we developed a binary material strategy by combining reduced graphene oxide (rGO) and tin disulfide (SnS<sub>2</sub>) with (100)-facets orientation as sensing layers of SAW device for DMMP detection utilized at room temperature. Ultraviolet (UV) light was applied to activate the sensitive film and reduce the sensor's response time. The developed SAW DMMP sensor demonstrated a superior sensitivity (-1298.82 Hz/ppm), a low detection limit of 50 ppb, and a hysteresis below 1.5%, along with fast response/recovery time (39.2 s/28.4 s), excellent selectivity, long-term stability and repeatability. The formation of shrub-like rGO-SnS<sub>2</sub> heterojunctions with abundant surface defects and large specific surface areas, high-energy (100) crystalline surfaces of SnS<sub>2</sub>, and photogenerated carriers generated by UV irradiation were pinpointed as the crucial sensing mechanisms. These factors collectively enhanced adsorption and reaction dynamics of DMMP molecules.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"282 ","pages":"127063"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-01-01Epub Date: 2024-09-18DOI: 10.1016/j.talanta.2024.126900
Ziwang Liu, Rihui Su, Xiaohua Xiao, Gongke Li
{"title":"Boronic acid ester-based hydrogel as surface-enhanced Raman scattering substrates for separation, enrichment, hydrolysis and detection of hydrogen peroxide residue in dairy product all-in-one.","authors":"Ziwang Liu, Rihui Su, Xiaohua Xiao, Gongke Li","doi":"10.1016/j.talanta.2024.126900","DOIUrl":"10.1016/j.talanta.2024.126900","url":null,"abstract":"<p><p>Rapid and selective separation, enrichment and detection of trace residue all-in-one in complex samples is a major challenge. Hydrogels with molecular sieve properties can selectively separate and enrich target analytes, and the combination with high sensitivity detection of surface-enhanced Raman scattering (SERS) is expected to achieve the above all-in-one detection. Herein, the core-shell structured Au@poly(N-isopropylacrylamide)-phenylboronic acid hydrogel (Au@PNIP-VBA) with boronic acid ester groups was prepared by thermally initiated polymerization. The boronic acid ester groups in hydrogel are selectively hydrolyzed by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to hydroxyl structures, leading to a reduction in SERS signals. The Au@PNIP-VBA hydrogel has molecular sieve properties and high SERS activity, making it suitable for separation, enrichment, hydrolysis and detection of H<sub>2</sub>O<sub>2</sub> all-in-one. A rapid SERS method was developed for analysis of H<sub>2</sub>O<sub>2</sub> based on the Au@PNIP-VBA hydrogel with the linear range of 8.5 × 10<sup>-2</sup>-6.8 mg L<sup>-1</sup> and the detection limit of 33 μg L<sup>-1</sup>. The method was successfully applied to the determination of H<sub>2</sub>O<sub>2</sub> residue in fresh milk, pure milk, yogurt and camel milk, with the recoveries were in the range of 82.2%-109.3% and the relative standard deviations were 2.8%-8.3%. This efficient all-in-one strategy has the advantages of simple sample pre-treatment, rapid analysis (30 min) and high sensitivity, making it highly promising for food quality and safety analysis.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126900"},"PeriodicalIF":5.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}