Salman Manzoor, Antonios Gouglidis, M. Bradbury, Neeraj Suri
{"title":"Poster","authors":"Salman Manzoor, Antonios Gouglidis, M. Bradbury, Neeraj Suri","doi":"10.1145/3548606.3563514","DOIUrl":"https://doi.org/10.1145/3548606.3563514","url":null,"abstract":"Moving Target Defense (MTD) can eliminate the asymmetric advantage that attackers have in terms of time to explore a static system by changing a system's configuration dynamically to reduce the efficacy of reconnaissance and increase uncertainty and complexity for attackers. To this extent, a variety of MTDs have been proposed for specific aspects of a system. However, deploying MTDs at different layers/components of the Cloud and assessing their effects on the overall security gains for the entire system is still challenging since the Cloud is a complex system entailing physical and virtual resources, and there exists a multitude of attack surfaces that an attacker can target. Thus, we explore the combination of MTDs, and their deployment at different components (belonging to various operational layers) to maximize the security gains offered by the MTDs.We also propose a quantification mechanism to evaluate the effectiveness of the MTDs against the attacks in the Cloud.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125594285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan Song
{"title":"TurboPack","authors":"D. Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan Song","doi":"10.1145/3548606.3560633","DOIUrl":"https://doi.org/10.1145/3548606.3560633","url":null,"abstract":"We present a novel approach to honest majority secure multiparty computation in the preprocessing model with information theoretic security that achieves the best online communication complexity. The online phase of our protocol requires 12 elements in total per multiplication gate with circuit-dependent preprocessing, or 20 elements in total with circuit-independent preprocessing. Prior works achieved linear online communication complexity in n, the number of parties, with the best prior existing solution involving 1.5n elements per multiplication gate. Only one recent work packing [28] achieves constant online communication complexity, but the constants are large (108 elements for passive security, and twice that for active security). That said, our protocol offers a very efficient information theoretic online phase for any number of parties. The total end-to-end communication cost with the preprocessing phase is linear in n, i.e., 10n + 44, which is larger than the 4n complexity of the state-of-the-art protocols. The gap is not significant when the online phase must be optimized as a priority and a reasonably large number of parties is involved. Unlike previous works based on packed secret-sharing to reduce communication complexity, we further reduce the communication by avoiding the use of complex and expensive network routing or permutations tools. Furthermore, we also allow for a maximal honest majority adversary, while most previous works require the set of honest parties to be strictly larger than a majority. Our protocol is simple and offers concrete efficiency. To illustrate this we present a full-fledged implementation together with experimental results that show improvements in online phase runtimes that go up to 5x in certain settings (e.g. 45 parties, LAN network, circuit of depth 10 with 1M gates).","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126549869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constant Latency in Sleepy Consensus","authors":"Atsuki Momose, Ling Ren","doi":"10.1145/3548606.3559347","DOIUrl":"https://doi.org/10.1145/3548606.3559347","url":null,"abstract":"Dynamic participation support is an important feature of Bitcoin's longest-chain protocol and its variants. But these protocols suffer from long latency as a fundamental trade-off. Specifically, the latency depends at least on the following two factors: 1) the desired security level of the protocol, and 2) the actual participation level of the network. Classic BFT protocols, on the other hand, can achieve constant latency but cannot make progress under dynamic participation. In this work, we present a protocol that simultaneously supports dynamic participation and achieves constant latency. Our core technique is to extend the classic BFT approach from static quorum size to dynamic quorum size, i.e., according to the current participation level, while preserving important properties of static quorum. We also present a recovery mechanism for rejoining nodes that is efficient in terms of both communication and storage. Our experimental evaluation shows our protocol has much lower latency than a longest-chain protocol, especially when there is a sudden decrease of participation.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133047948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poster: May the Swarm Be With You: Sensor Spoofing Attacks Against Drone Swarms","authors":"Yingao Yao, Pritam Dash, K. Pattabiraman","doi":"10.1145/3548606.3563535","DOIUrl":"https://doi.org/10.1145/3548606.3563535","url":null,"abstract":"Swarm robotics, particularly drone swarms, are used in various safety-critical tasks. While a lot of attention has been paid to improving swarm control algorithms for improved intelligence, the security implications of various design choices in swarm control algorithms have not been studied. We highlight how an attacker can exploit the vulnerabilities in swarm control algorithms to disrupt drone swarms. Specifically, we show that the attacker can target one swarm member (target drone) through sensor spoofing attacks, and indirectly cause other swarm members (victim drones) to veer off from their course, and potentially resulting in a crash. Our attack cannot be prevented by traditional software security techniques, and it is stealthy in nature as it causes seemingly benign deviations in drone swarms. Our initial results show that spoofing the position of a target drone by 5m is sufficient to cause other drones to crash into a front obstacle. Overall, our attack achieves 76.67% and 93.33% success rate with 5m and 10m spoofing deviation respectively.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133449704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Multi-User Security of Triple Encryption, Revisited: Exact Security, Strengthening, and Application to TDES","authors":"Yusuke Naito, Yu Sasaki, T. Sugawara, K. Yasuda","doi":"10.1145/3548606.3560674","DOIUrl":"https://doi.org/10.1145/3548606.3560674","url":null,"abstract":"We study the security of triple encryption in the multi-user setting with its application to Triple DES (TDES) in mind. Although depreciation of TDES is a global trend, the migration will take the next decade, considering the billions of TDES hardware the industry has invested so far. The multi-user security captures the reality of practical systems with multiple users, substantially impacts security, and is already considered in practical protocols such as TLS 1.3. The best multi-user lower bound of TDES is 43-(3/2) cdot łog_2 u bits with u users, which is tractable with a standard PC and is unacceptably low. We devise a new proof to improve the multi-user security and show its tightness by giving a concrete attack. The new bound with the TDES parameters is 79-(1/2) cdot łog_2 u bits. We also propose TEFX that strengthens triple encryption with the FX construction while preserving the compatibility with legacy hardware. TDES with TEFX achieves the multi-user security of 114-(1/2) cdot łog_2 q bits with q TEFX calls: it achieves 84.5 bits with 2^40 users and 2^21 TEFX calls for each user, which is comparable to that of AES (128-40=88 bits).","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115449386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PACE","authors":"Haibin Zhang, Sisi Duan","doi":"10.1145/3548606.3559348","DOIUrl":"https://doi.org/10.1145/3548606.3559348","url":null,"abstract":"The classic asynchronous Byzantine fault tolerance (BFT) framework of Ben-Or, Kemler, and Rabin (BKR) and its descendants rely on reliable broadcast (RBC) and asynchronous binary agreement (ABA). However, BKR does not allow all ABA instances to run in parallel, a well-known performance bottleneck. We propose PACE, a generic framework that removes the bottleneck, allowing fully parallelizable ABA instances. PACE is built on RBC and reproposable ABA (RABA). Different from the conventional ABA, RABA allows a replica to change its mind and vote twice. We show how to efficiently build RABA protocols from existing ABA protocols and a new ABA protocol that we introduce. We implement six new BFT protocols: three in the BKR framework, and three in the PACE framework. Via a deployment using 91 replicas on Amazon EC2 across five continents, we show that all PACE instantiations, in both failure-free and failure scenarios, significantly outperform their BKR counterparts, and prior BFT protocols such as BEAT and Dumbo, in terms of latency, throughput, latency vs. throughput, and scalability.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121928727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, Yang Liu
{"title":"On the (In)Security of Secure ROS2","authors":"Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, Yang Liu","doi":"10.1145/3548606.3560681","DOIUrl":"https://doi.org/10.1145/3548606.3560681","url":null,"abstract":"Robot Operating System (ROS) has been the mainstream platform for research and development of robotic applications. This platform is well-known for lacking security features and efficiency for distributed robotic computations. To address these issues, ROS2 is recently developed by utilizing the Data Distribution Service (DDS) to provide security support. Integrated with DDS, ROS2 is expected to establish the basis for trustworthy robotic ecosystems. In this paper, we systematically study the security of the current ROS2 implementation from three perspectives. By abstracting the key functions from the ROS2 native implementation, we first formally describe the ROS2 system communication workflow and model it using a concurrent modeling language. Second, we verify the model with some key security properties through a model checker, and successfully identify four security vulnerabilities in ROS2's native security module: Secure ROS2 (SROS2). To validate these flaws, we set up simulation and physical multi-robot testbeds running different real-world workloads developed by Open Robotics and Amazon AWS Robotics. We demonstrate that an adversary can exploit these vulnerabilities to totally invalidate the security protection offered by SROS2, and obtain unauthorized permissions or steal critical information. Third, to enhance the security of ROS2, we propose a general defense solution based on the private broadcast encryption scheme. We run different workloads and benchmarks to show the efficiency and security of our defense. Our findings have been acknowledge by ROS2 official, and the suggested mitigation has been implemented in the latest SROS2 version.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125941426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TRACER","authors":"Wooseok Kang, Byoungho Son, K. Heo","doi":"10.1145/3548606.3560664","DOIUrl":"https://doi.org/10.1145/3548606.3560664","url":null,"abstract":"Similar software vulnerabilities recur because developers reuse existing vulnerable code, or make similar mistakes when implementing the same logic. Recently, various analysis techniques have been proposed to find syntactically recurring vulnerabilities via code reuse. However, limited attention has been devoted to semantically recurring ones that share the same vulnerable behavior in different code structures. In this paper, we present a general analysis framework, called TRACER, for detecting such recurring vulnerabilities. TRACER is based on a taint analysis that can detect various types of vulnerabilities. For a given set of known vulnerabilities, the taint analysis extracts vulnerable traces and establishes a signature database of them. When a new unseen program is analyzed, TRACER compares all potentially vulnerable traces reported by the analysis with the known vulnerability signatures. Then, TRACER reports a list of potential vulnerabilities ranked by the similarity score. We evaluate TRACER on 273 Debian packages in C/C++. Our experiment results demonstrate that TRACER is able to find 281 previously unknown vulnerabilities with 6 CVE identifiers assigned.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124713327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingyang Zhou, Qiushi Wu, Dinghao Liu, S. Ji, Kangjie Lu
{"title":"Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting Security Bugs","authors":"Qingyang Zhou, Qiushi Wu, Dinghao Liu, S. Ji, Kangjie Lu","doi":"10.1145/3548606.3560661","DOIUrl":"https://doi.org/10.1145/3548606.3560661","url":null,"abstract":"Security bugs like memory errors are constantly introduced to software programs, and recent years have witnessed an increasing number of reported security bugs. Traditional detection approaches are mainly specification-based---detecting violations against a specified rule as security bugs. This often does not work well in practice because specifications are difficult to specify and generalize, leaving complicated and new types of bugs undetected. Recent research thus leans toward deviation-based detection which finds a substantial number of similar cases and detects deviating cases as potential bugs. This, however, suffers from two other problems. First, it requires enough similar cases to find deviations and thus cannot work for custom code that does not have similar cases. Second, code-similarity analysis is probabilistic and challenging, so the detection can be unreliable. Sometimes, similar cases can normally have deviating behaviors under different contexts. In this paper, we propose a novel approach for detecting security bugs based on a new concept called Non-Distinguishable Inconsistencies (NDI). The insight is that if two code paths in a function exhibit inconsistent security states (such as being freed or initialized) that are non-distinguishable from the external, such as the callers, there is no way to recover from the inconsistency from the external, which results in a bug. Such an approach has several strengths. First, it is specification-free and thus can support complicated and new types of bugs. Second, it does not require similar cases and by its nature is deterministic. Third, the analysis is practical by minimizing complicated and lengthy data-flow analysis. We implemented NDI and applied it to well-tested programs, including the OpenSSL library, the FreeBSD kernel, the Apache httpd server, and the PHP interpreter. The results show that NDI works for both large and small programs, and it effectively found 51 new bugs, most of which are otherwise missed by the state-of-the-art detection tools.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127273428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukas Aumayr, Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, Pedro A. Moreno-Sánchez, Matteo Maffei
{"title":"Sleepy Channels: Bi-directional Payment Channels without Watchtowers","authors":"Lukas Aumayr, Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, Pedro A. Moreno-Sánchez, Matteo Maffei","doi":"10.1145/3548606.3559370","DOIUrl":"https://doi.org/10.1145/3548606.3559370","url":null,"abstract":"Payment channels (PC) are a promising solution to the scalability issue of cryptocurrencies, allowing users to perform the bulk of the transactions off-chain without needing to post everything on the blockchain. Many PC proposals however, suffer from a severe limitation: Both parties need to constantly monitor the blockchain to ensure that the other party did not post an outdated transaction. If this event happens, the honest party needs to react promptly and engage in a punishment procedure. This means that prolonged absence periods (e.g., a power outage) may be exploited by malicious users. As a mitigation, the community has introduced watchtowers, a third-party monitoring the blockchain on behalf of off-line users. Unfortunately, watchtowers are either trusted, which is critical from a security perspective, or they have to lock a certain amount of coins, called collateral, for each monitored PC in order to be held accountable, which is financially infeasible for a large network. We present Sleepy Channels, the first bi-directional PC protocol without watchtowers (or any other third party) that supports an unbounded number of payments and does not require parties to be persistently online. The key idea is to confine the period in which PC updates can be validated on-chain to a short, pre-determined time window, which is when the PC parties have to be online. This behavior is incentivized by letting the parties lock a collateral in the PC, which can be adjusted depending on their mutual trust and which they get back much sooner if they are online during this time window. Our protocol is compatible with any blockchain that is capable of verifying digital signatures (e.g., Bitcoin), as shown by our proof of concept. Moreover, our experimental results show that Sleepy Channels impose a communication and computation overhead similar to state-of-the-art PC protocols while removing watchtower's collateral and fees for the monitoring service.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129091883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}