{"title":"三重加密的多用户安全性,重访:精确安全性、强化及在TDES中的应用","authors":"Yusuke Naito, Yu Sasaki, T. Sugawara, K. Yasuda","doi":"10.1145/3548606.3560674","DOIUrl":null,"url":null,"abstract":"We study the security of triple encryption in the multi-user setting with its application to Triple DES (TDES) in mind. Although depreciation of TDES is a global trend, the migration will take the next decade, considering the billions of TDES hardware the industry has invested so far. The multi-user security captures the reality of practical systems with multiple users, substantially impacts security, and is already considered in practical protocols such as TLS 1.3. The best multi-user lower bound of TDES is 43-(3/2) \\cdot łog_2 u bits with u users, which is tractable with a standard PC and is unacceptably low. We devise a new proof to improve the multi-user security and show its tightness by giving a concrete attack. The new bound with the TDES parameters is 79-(1/2) \\cdot łog_2 u bits. We also propose TEFX that strengthens triple encryption with the FX construction while preserving the compatibility with legacy hardware. TDES with TEFX achieves the multi-user security of 114-(1/2) \\cdot łog_2 q bits with q TEFX calls: it achieves 84.5 bits with 2^40 users and 2^21 TEFX calls for each user, which is comparable to that of AES (128-40=88 bits).","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Multi-User Security of Triple Encryption, Revisited: Exact Security, Strengthening, and Application to TDES\",\"authors\":\"Yusuke Naito, Yu Sasaki, T. Sugawara, K. Yasuda\",\"doi\":\"10.1145/3548606.3560674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the security of triple encryption in the multi-user setting with its application to Triple DES (TDES) in mind. Although depreciation of TDES is a global trend, the migration will take the next decade, considering the billions of TDES hardware the industry has invested so far. The multi-user security captures the reality of practical systems with multiple users, substantially impacts security, and is already considered in practical protocols such as TLS 1.3. The best multi-user lower bound of TDES is 43-(3/2) \\\\cdot łog_2 u bits with u users, which is tractable with a standard PC and is unacceptably low. We devise a new proof to improve the multi-user security and show its tightness by giving a concrete attack. The new bound with the TDES parameters is 79-(1/2) \\\\cdot łog_2 u bits. We also propose TEFX that strengthens triple encryption with the FX construction while preserving the compatibility with legacy hardware. TDES with TEFX achieves the multi-user security of 114-(1/2) \\\\cdot łog_2 q bits with q TEFX calls: it achieves 84.5 bits with 2^40 users and 2^21 TEFX calls for each user, which is comparable to that of AES (128-40=88 bits).\",\"PeriodicalId\":435197,\"journal\":{\"name\":\"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3548606.3560674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3560674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Multi-User Security of Triple Encryption, Revisited: Exact Security, Strengthening, and Application to TDES
We study the security of triple encryption in the multi-user setting with its application to Triple DES (TDES) in mind. Although depreciation of TDES is a global trend, the migration will take the next decade, considering the billions of TDES hardware the industry has invested so far. The multi-user security captures the reality of practical systems with multiple users, substantially impacts security, and is already considered in practical protocols such as TLS 1.3. The best multi-user lower bound of TDES is 43-(3/2) \cdot łog_2 u bits with u users, which is tractable with a standard PC and is unacceptably low. We devise a new proof to improve the multi-user security and show its tightness by giving a concrete attack. The new bound with the TDES parameters is 79-(1/2) \cdot łog_2 u bits. We also propose TEFX that strengthens triple encryption with the FX construction while preserving the compatibility with legacy hardware. TDES with TEFX achieves the multi-user security of 114-(1/2) \cdot łog_2 q bits with q TEFX calls: it achieves 84.5 bits with 2^40 users and 2^21 TEFX calls for each user, which is comparable to that of AES (128-40=88 bits).