TRACER

Wooseok Kang, Byoungho Son, K. Heo
{"title":"TRACER","authors":"Wooseok Kang, Byoungho Son, K. Heo","doi":"10.1145/3548606.3560664","DOIUrl":null,"url":null,"abstract":"Similar software vulnerabilities recur because developers reuse existing vulnerable code, or make similar mistakes when implementing the same logic. Recently, various analysis techniques have been proposed to find syntactically recurring vulnerabilities via code reuse. However, limited attention has been devoted to semantically recurring ones that share the same vulnerable behavior in different code structures. In this paper, we present a general analysis framework, called TRACER, for detecting such recurring vulnerabilities. TRACER is based on a taint analysis that can detect various types of vulnerabilities. For a given set of known vulnerabilities, the taint analysis extracts vulnerable traces and establishes a signature database of them. When a new unseen program is analyzed, TRACER compares all potentially vulnerable traces reported by the analysis with the known vulnerability signatures. Then, TRACER reports a list of potential vulnerabilities ranked by the similarity score. We evaluate TRACER on 273 Debian packages in C/C++. Our experiment results demonstrate that TRACER is able to find 281 previously unknown vulnerabilities with 6 CVE identifiers assigned.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3560664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Similar software vulnerabilities recur because developers reuse existing vulnerable code, or make similar mistakes when implementing the same logic. Recently, various analysis techniques have been proposed to find syntactically recurring vulnerabilities via code reuse. However, limited attention has been devoted to semantically recurring ones that share the same vulnerable behavior in different code structures. In this paper, we present a general analysis framework, called TRACER, for detecting such recurring vulnerabilities. TRACER is based on a taint analysis that can detect various types of vulnerabilities. For a given set of known vulnerabilities, the taint analysis extracts vulnerable traces and establishes a signature database of them. When a new unseen program is analyzed, TRACER compares all potentially vulnerable traces reported by the analysis with the known vulnerability signatures. Then, TRACER reports a list of potential vulnerabilities ranked by the similarity score. We evaluate TRACER on 273 Debian packages in C/C++. Our experiment results demonstrate that TRACER is able to find 281 previously unknown vulnerabilities with 6 CVE identifiers assigned.
示踪剂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信