Salman Manzoor, Antonios Gouglidis, M. Bradbury, Neeraj Suri
{"title":"Poster","authors":"Salman Manzoor, Antonios Gouglidis, M. Bradbury, Neeraj Suri","doi":"10.1145/3548606.3563514","DOIUrl":null,"url":null,"abstract":"Moving Target Defense (MTD) can eliminate the asymmetric advantage that attackers have in terms of time to explore a static system by changing a system's configuration dynamically to reduce the efficacy of reconnaissance and increase uncertainty and complexity for attackers. To this extent, a variety of MTDs have been proposed for specific aspects of a system. However, deploying MTDs at different layers/components of the Cloud and assessing their effects on the overall security gains for the entire system is still challenging since the Cloud is a complex system entailing physical and virtual resources, and there exists a multitude of attack surfaces that an attacker can target. Thus, we explore the combination of MTDs, and their deployment at different components (belonging to various operational layers) to maximize the security gains offered by the MTDs.We also propose a quantification mechanism to evaluate the effectiveness of the MTDs against the attacks in the Cloud.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3563514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Moving Target Defense (MTD) can eliminate the asymmetric advantage that attackers have in terms of time to explore a static system by changing a system's configuration dynamically to reduce the efficacy of reconnaissance and increase uncertainty and complexity for attackers. To this extent, a variety of MTDs have been proposed for specific aspects of a system. However, deploying MTDs at different layers/components of the Cloud and assessing their effects on the overall security gains for the entire system is still challenging since the Cloud is a complex system entailing physical and virtual resources, and there exists a multitude of attack surfaces that an attacker can target. Thus, we explore the combination of MTDs, and their deployment at different components (belonging to various operational layers) to maximize the security gains offered by the MTDs.We also propose a quantification mechanism to evaluate the effectiveness of the MTDs against the attacks in the Cloud.