2015 International Conference on Advanced Robotics (ICAR)最新文献

筛选
英文 中文
First validation of the Haptic Sandwich: A shape changing handheld haptic navigation aid 触觉三明治的首次验证:一种可改变形状的手持触觉导航辅助设备
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251447
A. Spiers, A. Dollar, J. Linden, Maria Oshodi
{"title":"First validation of the Haptic Sandwich: A shape changing handheld haptic navigation aid","authors":"A. Spiers, A. Dollar, J. Linden, Maria Oshodi","doi":"10.1109/ICAR.2015.7251447","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251447","url":null,"abstract":"This paper presents the Haptic Sandwich, a handheld robotic device that designed to provide navigation instructions to pedestrians through a novel shape changing modality. The device resembles a cube with an articulated upper half that is able to rotate and translate (extend) relative to the bottom half, which is grounded in the user's hand. The poses assumed by the device simultaneously correspond to heading and proximity to a navigational target. The Haptic Sandwich provides an alternative to screen and/or audio based navigation technologies for both visually impaired and sighted pedestrians. Unlike many robotic or haptic navigational solutions, the haptic sandwich is discrete and unobtrusive in terms of form and sensory stimulus. Due to the novel nature of the interface, two user studies were undertaken to validate the concept and device. In the first experiment, stationary participants attempted to identify poses assumed by the device, which was hidden from view. 80% of poses were correctly identified and 17.5% had the minimal possible error. Multi-DOF errors accounted for only 1.1% of all responses. Perception accuracy of the rotation and extension DOF was significantly different. In the second study, participants attempted to locate a sequence of invisible navigational targets while walking with the device. Good navigational ability was demonstrated after minimal training. All participants were able to locate all targets, utilizing both DOF. Walking path efficiency was between 32%-56%. In summary, the paper presents the design of a novel shape changing haptic user interface intended to be intuitive and unobtrusive. The interface is then validated by stationary perceptual experiments and an embodied (walking) target finding pilot study.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133536764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
The KIT whole-body human motion database KIT全身人体运动数据库
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251476
Christian Mandery, Ömer Terlemez, Martin Do, N. Vahrenkamp, T. Asfour
{"title":"The KIT whole-body human motion database","authors":"Christian Mandery, Ömer Terlemez, Martin Do, N. Vahrenkamp, T. Asfour","doi":"10.1109/ICAR.2015.7251476","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251476","url":null,"abstract":"We present a large-scale whole-body human motion database consisting of captured raw motion data as well as the corresponding post-processed motions. This database serves as a key element for a wide variety of research questions related e.g. to human motion analysis, imitation learning, action recognition and motion generation in robotics. In contrast to previous approaches, the motion data in our database considers the motions of the observed human subject as well as the objects with which the subject is interacting. The information about human-object relations is crucial for the proper understanding of human actions and their goal-directed reproduction on a robot. To facilitate the creation and processing of human motion data, we propose procedures and techniques for capturing of motion, labeling and organization of the motion capture data based on a Motion Description Tree, as well as for the normalization of human motion to an unified representation based on a reference model of the human body. We provide software tools and interfaces to the database allowing access and efficient search with the proposed motion representation.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113974589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 175
A fast dense stereo matching algorithm with an application to 3D occupancy mapping using quadrocopters 一种快速密集立体匹配算法,应用于使用四旋翼飞行器的三维占用映射
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251515
Radouane Ait Jellal, A. Zell
{"title":"A fast dense stereo matching algorithm with an application to 3D occupancy mapping using quadrocopters","authors":"Radouane Ait Jellal, A. Zell","doi":"10.1109/ICAR.2015.7251515","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251515","url":null,"abstract":"We propose a fast algorithm for computing stereo correspondences and correcting the mismatches. The correspondences are computed using stereo block matching and refined with a depth-aware method. We compute 16 disparities at the same time using SSE instructions. We evaluated our method on the Middlebury benchmark and obtained promosing results for practical realtime applications. The use of SSE instructions allows us to reduce the time needed to process the Tsukuba stereo pair to 8 milliseconds (125 fps) on a Core i5 CPU with 2×3.3 GHz. Our disparity refinement method has corrected 40% of the wrong matches with an additional computational time of 5.2% (0.41ms). The algorithm has been used to build 3D occupancy grid maps from stereo images. We used the datasets provided by the EuRoC Robotic Challenge. The reconstruction was accurate enough to perform realtime safe navigation.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114891142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Integrating spatial concepts into a probabilistic concept web 将空间概念整合成一个概率概念网
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251465
H. Çelikkanat, E. Sahin, Sinan Kalkan
{"title":"Integrating spatial concepts into a probabilistic concept web","authors":"H. Çelikkanat, E. Sahin, Sinan Kalkan","doi":"10.1109/ICAR.2015.7251465","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251465","url":null,"abstract":"In this paper, we study the learning and representation of grounded spatial concepts in a probabilistic concept web that connects them with other noun, adjective, and verb concepts. Specifically, we focus on the prepositional spatial concepts, such as “on”, “below”, “left”, “right”, “in front of” and “behind”. In our prior work (Celikkanat et al., 2015), inspired from the distributed highly-connected conceptual representation in human brain, we proposed using Markov Random Field for modeling a concept web on a humanoid robot. For adequately expressing the unidirectional (i.e., non-symmetric) nature of the spatial propositions, in this work, we propose a extension of the Markov Random Field into a simple hybrid Markov Random Field model, allowing both undirected and directed connections between concepts. We demonstrate that our humanoid robot, iCub, is able to (i) extract meaningful spatial concepts in addition to noun, adjective and verb concepts from a scene using the proposed model, (ii) correct wrong initial predictions using the connectedness of the concept web, and (iii) respond correctly to queries involving spatial concepts, such as ball-left-of-the-cup.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133273591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An approach to multi-agent pursuit evasion games using reinforcement learning 一种基于强化学习的多智能体追逃博弈方法
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251450
A. Bilgin, Esra Kadioglu Urtis
{"title":"An approach to multi-agent pursuit evasion games using reinforcement learning","authors":"A. Bilgin, Esra Kadioglu Urtis","doi":"10.1109/ICAR.2015.7251450","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251450","url":null,"abstract":"The game of pursuit-evasion has always been a popular research subject in the field of robotics. Reinforcement learning, which employs an agent's interaction with the environment, is a method widely used in pursuit-evasion domain. In this paper, a research is conducted on multi-agent pursuit-evasion problem using reinforcement learning and the experimental results are shown. The intelligent agents use Watkins's Q(λ)-learning algorithm to learn from their interactions. Q-learning is an off-policy temporal difference control algorithm. The method we utilize on the other hand, is a unified version of Q-learning and eligibility traces. It uses backup information until the first occurrence of an exploration. In our work, concurrent learning is adopted for the pursuit team. In this approach, each member of the team has got its own action-value function and updates its information space independently.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130568489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Safety-aware trajectory scaling for Human-Robot Collaboration with prediction of human occupancy 基于人类占用预测的人机协作安全感知轨迹缩放
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251438
M. Ragaglia, A. Zanchettin, P. Rocco
{"title":"Safety-aware trajectory scaling for Human-Robot Collaboration with prediction of human occupancy","authors":"M. Ragaglia, A. Zanchettin, P. Rocco","doi":"10.1109/ICAR.2015.7251438","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251438","url":null,"abstract":"Planning and control of an industrial manipulator for safe Human-Robot Collaboration (HRC) is a difficult task because of two conflicting requirements: ensuring the worker's safety and completing the task assigned to the robot. This paper proposes a trajectory scaling algorithm for safe HRC that relies on real-time prediction of human occupancy. Knowing the space that the human will occupy within the robot stopping time, the controller can scale the manipulator's velocity allowing safe HRC and avoiding task interruption. Finally, experimental results are presented and discussed.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124851321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Fast ICP-SLAM for a bi-steerable mobile robot in large environments 大型环境双导向移动机器人的快速ICP-SLAM
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251519
R. Tiar, M. Lakrouf, O. Azouaoui
{"title":"Fast ICP-SLAM for a bi-steerable mobile robot in large environments","authors":"R. Tiar, M. Lakrouf, O. Azouaoui","doi":"10.1109/ICAR.2015.7251519","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251519","url":null,"abstract":"This paper describes the implementation of a local ICP-SLAM (Iterative Closest Point - Simultaneous Localization and Mapping) to improve the method presented in [1] to become faster. The ICP algorithm is known as a method that requires more computation time when the environment grows leading to poor results for both localization and mapping. Therefore, the ICP-SLAM is not recommended to use in real time for large environments. To overcome this problem, a local ICP-SLAM is introduced which is based on the partition of the environment on smaller parts. This method is implemented and tested on the car-like mobile robot “Robucar”. It allows the optimization of the computation time and localization accuracy. The experimental results show the effectiveness of the proposed local ICP-SLAM compared to the method in [1].","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125547440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Modelling daily actions through hand-based spatio-temporal features 通过基于手的时空特征对日常行为进行建模
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251499
Olga Mur, M. Frigola, A. Casals
{"title":"Modelling daily actions through hand-based spatio-temporal features","authors":"Olga Mur, M. Frigola, A. Casals","doi":"10.1109/ICAR.2015.7251499","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251499","url":null,"abstract":"In this paper, we propose a new approach to domestic action recognition based on a set of features which describe the relation between poses and movements of both hands. These features represent a set of basic actions in a kitchen in terms of the mimics of the hand movements, without needing information of the objects present in the scene. They address specifically the intra-class dissimilarity problem, which occurs when the same action is performed in different ways. The goal is to create a generic methodology that enables a robotic assistant system to recognize actions related to daily life activities and then, be endowed with a proactive behavior. The proposed system uses depth and color data acquired from a Kinect-style sensor and a hand tracking system. We analyze the relevance of the proposed hand-based features using a state-space search approach. Finally, we show the effectiveness of our action recognition approach using our own dataset.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129065220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An autonomous firefighting robot 自动消防机器人
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251507
Ahmed Hassanein, M. Elhawary, Nour Jaber, Mohammed El-Abd
{"title":"An autonomous firefighting robot","authors":"Ahmed Hassanein, M. Elhawary, Nour Jaber, Mohammed El-Abd","doi":"10.1109/ICAR.2015.7251507","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251507","url":null,"abstract":"The field of firefighting has long been a dangerous one, and there have been numerous and devastating losses because of a lack in technological advancement. Additionally, the current methods applied in firefighting are inadequate and inefficient relying heavily on humans who are prone to error, no matter how extensively they have been trained. A recent trend that has become popular is to use robots instead of humans to handle fire hazards. This is mainly because they can be used in situations that are too dangerous for any individual to involve themselves in. In our project, we develop a robot that is able to locate and extinguish fire in a given environment. The robot navigates the arena and avoids any obstacles it faces in its excursion.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115450299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Humanlike, task-specific reaching and grasping with redundant arms and low-complexity hands 用冗余的手臂和低复杂度的手进行类似人类的、特定任务的伸手和抓握
2015 International Conference on Advanced Robotics (ICAR) Pub Date : 2015-07-27 DOI: 10.1109/ICAR.2015.7251501
Minas Liarokapis, A. Dollar, K. Kyriakopoulos
{"title":"Humanlike, task-specific reaching and grasping with redundant arms and low-complexity hands","authors":"Minas Liarokapis, A. Dollar, K. Kyriakopoulos","doi":"10.1109/ICAR.2015.7251501","DOIUrl":"https://doi.org/10.1109/ICAR.2015.7251501","url":null,"abstract":"In this paper, we propose a methodology for closed-loop, humanlike, task-specific reaching and grasping with redundant robot arms and low-complexity robot hands. Human demonstrations are utilized in a learn by demonstration fashion, in order to map human to humanlike robot motion. Principal Components Analysis (PCA) is used to transform the humanlike robot motion in a low-dimensional manifold, where appropriate Navigation Function (NF) models are trained. A series of grasp quality measures, as well as task compatibility indexes are employed to guarantee robustness of the computed grasps and task specificity of goal robot configurations. The final scheme provides anthropomorphic robot motion, task-specific robot arm configurations and hand grasping postures, optimized fingertips placement on the object surface (that results to robust grasps) and guaranteed convergence to the desired goals. The position and geometry of the objects are considered a-priori known. The efficiency of the proposed methods is assessed with simulations and experiments that involve different robot arm hand systems. The proposed scheme can be useful for various Human Robot Interaction (HRI) applications.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132509050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信