{"title":"基于人类占用预测的人机协作安全感知轨迹缩放","authors":"M. Ragaglia, A. Zanchettin, P. Rocco","doi":"10.1109/ICAR.2015.7251438","DOIUrl":null,"url":null,"abstract":"Planning and control of an industrial manipulator for safe Human-Robot Collaboration (HRC) is a difficult task because of two conflicting requirements: ensuring the worker's safety and completing the task assigned to the robot. This paper proposes a trajectory scaling algorithm for safe HRC that relies on real-time prediction of human occupancy. Knowing the space that the human will occupy within the robot stopping time, the controller can scale the manipulator's velocity allowing safe HRC and avoiding task interruption. Finally, experimental results are presented and discussed.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Safety-aware trajectory scaling for Human-Robot Collaboration with prediction of human occupancy\",\"authors\":\"M. Ragaglia, A. Zanchettin, P. Rocco\",\"doi\":\"10.1109/ICAR.2015.7251438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning and control of an industrial manipulator for safe Human-Robot Collaboration (HRC) is a difficult task because of two conflicting requirements: ensuring the worker's safety and completing the task assigned to the robot. This paper proposes a trajectory scaling algorithm for safe HRC that relies on real-time prediction of human occupancy. Knowing the space that the human will occupy within the robot stopping time, the controller can scale the manipulator's velocity allowing safe HRC and avoiding task interruption. Finally, experimental results are presented and discussed.\",\"PeriodicalId\":432004,\"journal\":{\"name\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2015.7251438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety-aware trajectory scaling for Human-Robot Collaboration with prediction of human occupancy
Planning and control of an industrial manipulator for safe Human-Robot Collaboration (HRC) is a difficult task because of two conflicting requirements: ensuring the worker's safety and completing the task assigned to the robot. This paper proposes a trajectory scaling algorithm for safe HRC that relies on real-time prediction of human occupancy. Knowing the space that the human will occupy within the robot stopping time, the controller can scale the manipulator's velocity allowing safe HRC and avoiding task interruption. Finally, experimental results are presented and discussed.