大型环境双导向移动机器人的快速ICP-SLAM

R. Tiar, M. Lakrouf, O. Azouaoui
{"title":"大型环境双导向移动机器人的快速ICP-SLAM","authors":"R. Tiar, M. Lakrouf, O. Azouaoui","doi":"10.1109/ICAR.2015.7251519","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation of a local ICP-SLAM (Iterative Closest Point - Simultaneous Localization and Mapping) to improve the method presented in [1] to become faster. The ICP algorithm is known as a method that requires more computation time when the environment grows leading to poor results for both localization and mapping. Therefore, the ICP-SLAM is not recommended to use in real time for large environments. To overcome this problem, a local ICP-SLAM is introduced which is based on the partition of the environment on smaller parts. This method is implemented and tested on the car-like mobile robot “Robucar”. It allows the optimization of the computation time and localization accuracy. The experimental results show the effectiveness of the proposed local ICP-SLAM compared to the method in [1].","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fast ICP-SLAM for a bi-steerable mobile robot in large environments\",\"authors\":\"R. Tiar, M. Lakrouf, O. Azouaoui\",\"doi\":\"10.1109/ICAR.2015.7251519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the implementation of a local ICP-SLAM (Iterative Closest Point - Simultaneous Localization and Mapping) to improve the method presented in [1] to become faster. The ICP algorithm is known as a method that requires more computation time when the environment grows leading to poor results for both localization and mapping. Therefore, the ICP-SLAM is not recommended to use in real time for large environments. To overcome this problem, a local ICP-SLAM is introduced which is based on the partition of the environment on smaller parts. This method is implemented and tested on the car-like mobile robot “Robucar”. It allows the optimization of the computation time and localization accuracy. The experimental results show the effectiveness of the proposed local ICP-SLAM compared to the method in [1].\",\"PeriodicalId\":432004,\"journal\":{\"name\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2015.7251519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文描述了一种局部ICP-SLAM(迭代最近点-同步定位和映射)的实现,以改进[1]中提出的方法,使其变得更快。ICP算法是一种随着环境的增长而需要更多计算时间,从而导致定位和映射结果不佳的方法。因此,不建议在大型环境中实时使用ICP-SLAM。为了克服这个问题,引入了一种基于局部环境分区的局部ICP-SLAM。该方法在类车移动机器人“罗布卡”上进行了实现和测试。它可以优化计算时间和定位精度。实验结果表明,与文献[1]的方法相比,本文提出的局部ICP-SLAM方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast ICP-SLAM for a bi-steerable mobile robot in large environments
This paper describes the implementation of a local ICP-SLAM (Iterative Closest Point - Simultaneous Localization and Mapping) to improve the method presented in [1] to become faster. The ICP algorithm is known as a method that requires more computation time when the environment grows leading to poor results for both localization and mapping. Therefore, the ICP-SLAM is not recommended to use in real time for large environments. To overcome this problem, a local ICP-SLAM is introduced which is based on the partition of the environment on smaller parts. This method is implemented and tested on the car-like mobile robot “Robucar”. It allows the optimization of the computation time and localization accuracy. The experimental results show the effectiveness of the proposed local ICP-SLAM compared to the method in [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信