KIT全身人体运动数据库

Christian Mandery, Ömer Terlemez, Martin Do, N. Vahrenkamp, T. Asfour
{"title":"KIT全身人体运动数据库","authors":"Christian Mandery, Ömer Terlemez, Martin Do, N. Vahrenkamp, T. Asfour","doi":"10.1109/ICAR.2015.7251476","DOIUrl":null,"url":null,"abstract":"We present a large-scale whole-body human motion database consisting of captured raw motion data as well as the corresponding post-processed motions. This database serves as a key element for a wide variety of research questions related e.g. to human motion analysis, imitation learning, action recognition and motion generation in robotics. In contrast to previous approaches, the motion data in our database considers the motions of the observed human subject as well as the objects with which the subject is interacting. The information about human-object relations is crucial for the proper understanding of human actions and their goal-directed reproduction on a robot. To facilitate the creation and processing of human motion data, we propose procedures and techniques for capturing of motion, labeling and organization of the motion capture data based on a Motion Description Tree, as well as for the normalization of human motion to an unified representation based on a reference model of the human body. We provide software tools and interfaces to the database allowing access and efficient search with the proposed motion representation.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":"16 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"175","resultStr":"{\"title\":\"The KIT whole-body human motion database\",\"authors\":\"Christian Mandery, Ömer Terlemez, Martin Do, N. Vahrenkamp, T. Asfour\",\"doi\":\"10.1109/ICAR.2015.7251476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a large-scale whole-body human motion database consisting of captured raw motion data as well as the corresponding post-processed motions. This database serves as a key element for a wide variety of research questions related e.g. to human motion analysis, imitation learning, action recognition and motion generation in robotics. In contrast to previous approaches, the motion data in our database considers the motions of the observed human subject as well as the objects with which the subject is interacting. The information about human-object relations is crucial for the proper understanding of human actions and their goal-directed reproduction on a robot. To facilitate the creation and processing of human motion data, we propose procedures and techniques for capturing of motion, labeling and organization of the motion capture data based on a Motion Description Tree, as well as for the normalization of human motion to an unified representation based on a reference model of the human body. We provide software tools and interfaces to the database allowing access and efficient search with the proposed motion representation.\",\"PeriodicalId\":432004,\"journal\":{\"name\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"volume\":\"16 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"175\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2015.7251476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 175

摘要

我们提出了一个大规模的全身人体运动数据库,包括捕获的原始运动数据以及相应的后处理运动。该数据库是各种研究问题的关键要素,例如,机器人中的人体运动分析,模仿学习,动作识别和运动生成。与以前的方法相反,我们数据库中的运动数据考虑了观察到的人类主体的运动以及主体与之交互的物体。关于人-物关系的信息对于正确理解人类行为及其在机器人上的目标导向复制至关重要。为了方便人体运动数据的创建和处理,我们提出了基于运动描述树的运动捕获、标记和组织运动捕获数据的程序和技术,以及基于人体参考模型的人体运动归一化到统一表示的程序和技术。我们提供了软件工具和数据库接口,允许访问和有效搜索提出的运动表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The KIT whole-body human motion database
We present a large-scale whole-body human motion database consisting of captured raw motion data as well as the corresponding post-processed motions. This database serves as a key element for a wide variety of research questions related e.g. to human motion analysis, imitation learning, action recognition and motion generation in robotics. In contrast to previous approaches, the motion data in our database considers the motions of the observed human subject as well as the objects with which the subject is interacting. The information about human-object relations is crucial for the proper understanding of human actions and their goal-directed reproduction on a robot. To facilitate the creation and processing of human motion data, we propose procedures and techniques for capturing of motion, labeling and organization of the motion capture data based on a Motion Description Tree, as well as for the normalization of human motion to an unified representation based on a reference model of the human body. We provide software tools and interfaces to the database allowing access and efficient search with the proposed motion representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信