Xi Fu , Jian Lin , Guangyao Liang , Wenhu Liao , Xiaowu Li , Liming Li
{"title":"Spin-dependent photogalvanic effect in the photodetector device based on penta-PtN2 monolayer","authors":"Xi Fu , Jian Lin , Guangyao Liang , Wenhu Liao , Xiaowu Li , Liming Li","doi":"10.1016/j.ssc.2024.115751","DOIUrl":"10.1016/j.ssc.2024.115751","url":null,"abstract":"<div><div>As a nonlinear phenomenon, photogalvanic effect in low dimensional materials have attracted intensive attentions at recent years. In this paper, based on a typical two-dimensional pentagon material penta-PtN<sub>2</sub> monolayer, we built a photodetector device which including the vacancy and substitution-doping situations, and studied their spin photocurrents generated by the photogalvanic effect, respectively. It has been found that the spin photocurrents in these PtN<sub>2</sub>-PhoDets exhibited the relations cos(2<em>θ</em>+<em>θ</em><sub>0</sub>) on the polarization angle, and different photon energies can affect these relations. Moreover, since the symmetry of PtN<sub>2</sub>-PhoDets decrease from <em>C</em><sub><em>2v</em></sub> to <em>C</em><sub><em>s</em></sub> when introducing the vacancy and substitution-doping, the strength of spin photocurrents slightly enlarged showing the enhancement of PGE. Furthermore, there exhibited very high spin polarizations, which were close to the 100 % full spin polarization at the Pt-Vacancy, Doping(N)-Pt and Doping(Pt)-N2 situations, and then pure spin current can form at these special situations. Additionally, the relative high extinction ratios show that the PtN<sub>2</sub>-PhoDets were high-sensitive. The findings indicated that the penta-PtN<sub>2</sub> monolayer was of considerable significances on the practical applications in low-energy power optoelectronic and spintronic devices.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115751"},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MoS2 containing (Si, Se, P+Cl) structure doping and (Au and Ag) surface decorating as a sensor of Methanethiol biomarker: A first-principles study","authors":"Shirin Sabokdast , Nadia Salami , Ashkan Horri","doi":"10.1016/j.ssc.2024.115746","DOIUrl":"10.1016/j.ssc.2024.115746","url":null,"abstract":"<div><div>MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> monolayer is a highly promising material for gas and biosensors due to its exceptional physical and chemical properties. Recent research suggests that modified MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> monolayers demonstrate improved properties compared to unmodified ones. In this study, we employed density functional theory to investigate MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> doped and decorated with transition metallic atoms such as Ag and Au, as well as non-metallic atoms like Se, Si, P, and Cl, for the detection of the Methanethiol biomarker. In this regard, the adsorption energy, charge transfer, adsorption distance, I–V, TDOS, PDOS, and sensitivity are calculated for each structure. The results reveal that the adsorption energy and charge transfer of the Methanethiol biomarker on MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> modified with Ag, Au, and Si atoms are higher than that of unmodified MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The most significant changes in I–V curves and chemical adsorption occur in these structures. The highest sensitivity is achieved when the MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> monolayer is decorated with Ag atoms, Au decorated, and doped with two Si atoms, respectively. Also, doping with Se, P, and Cl atoms results in the lowest adsorption energy, charge transfer, and sensitivity. This study provides valuable insights into the potential applications of both unmodified and modified MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> as Methanethiol biomarker sensor materials.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"396 ","pages":"Article 115746"},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I.M. Saavedra Gaona , C.F. Camargo Castillo , J.E. Duarte , J. Roa-Rojas , D.A. Landínez Téllez , J. Munevar , C.A. Parra Vargas
{"title":"Effect of rare earth doping on structural, morphological, optical, and magnetic properties of the Y1-x(Gd, Dy)xBaCuFeO5 (x = 0.2, 0.4, 0.6, and 0.8) ceramics","authors":"I.M. Saavedra Gaona , C.F. Camargo Castillo , J.E. Duarte , J. Roa-Rojas , D.A. Landínez Téllez , J. Munevar , C.A. Parra Vargas","doi":"10.1016/j.ssc.2024.115750","DOIUrl":"10.1016/j.ssc.2024.115750","url":null,"abstract":"<div><div>The effect of the rare earth (RE) ion substitution on the structural, morphological, optical and magnetic properties of the Y<sub>1-<em>x</em></sub>RE<sub><em>x</em></sub>BaCuFeO<sub>5</sub> (RE = Gd, Dy; <em>x</em> = 0.2, 0.4, 0.6, and 0.8) multiferroic compounds grown by the solid-state reaction is evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX), reflectance spectroscopy techniques diffuse (UV–vis–NIR) and vibrating sample magnetometry (VSM). The results indicate that the RE substitution led to growth of single-phase materials, with a tetragonal structure and <em>P</em>4<em>mm</em> symmetry. The morphological analysis shows the formation of polycrystalline materials composed of grains of various shapes and sizes. Furthermore, the compositional analysis reveals that the materials do not present elements other than those used in the synthesis. The band gap (E<sub><em>g</em></sub>) is tuned from 0.88 to 0.90 eV upon RE substitution. The magnetization curves obtained in the Zero-Field-Cooled/Field-Cooled (ZFC-FC) modes between 50 and 390 K, reveal a paramagnetic behavior, which could be attributed to the dominance exerted by the magnetic moments of the Gd/Dy ions.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115750"},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High sensitivity to the electric field of both the phase transition temperature and the electrocaloric effect in ferroelectric NH4HSeO4","authors":"V.S. Bondarev , E.A. Mikhaleva , M.V. Gorev , I.N. Flerov","doi":"10.1016/j.ssc.2024.115747","DOIUrl":"10.1016/j.ssc.2024.115747","url":null,"abstract":"<div><div>The effect of an electric field on thermal and dielectric properties as well as electrocaloric response in the ferroelectric NH<sub>4</sub>HSeO<sub>4</sub> has been studied using a universal multifunctional adiabatic calorimeter. The phase transition temperature between the ferroelectric and incommensurate phases is found to be highly sensitive to the electric field, d<em>T</em><sub>2</sub>/d<em>E</em> ≈ 1.6 K/(kV/cm), at a low electric field strength. The intensive electrocaloric effect at <em>E</em> = 1.35 kV/cm observed by direct measurements, Δ<em>T</em><sub>AD</sub> ≈ 0.045 K, as well as determined indirectly by analyzing the entropy-temperature-electric field phase diagram, Δ<em>T</em><sub>AD</sub> ≈ 0.03 K, is quite large compared to the effects in other ferroelectrics.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115747"},"PeriodicalIF":2.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nzar Rauf Abdullah , Shaida Anwer Kakil , Vidar Gudmundsson
{"title":"Buckling-induced variations in electronic, thermal, and optical properties of B3C2N3 monolayer: DFT and AIMD computational approaches","authors":"Nzar Rauf Abdullah , Shaida Anwer Kakil , Vidar Gudmundsson","doi":"10.1016/j.ssc.2024.115744","DOIUrl":"10.1016/j.ssc.2024.115744","url":null,"abstract":"<div><div>Density functional theory is employed to study the novel properties of B<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> monolayer to gain a deeper understanding of variation of electronic, thermal, and optical characteristics arising due to buckling effects. The band structure analysis reveals an energy gap reduction of the buckled B<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> monolayer, causing a displacement of the band gap from the visible to the infrared range. Moreover, the buckling controls the location of the initially, and finally, direct band gap moving it from the K to the <span><math><mi>Γ</mi></math></span> point in the B<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> monolayer. The phonon band structure calculations indicate that buckled B<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> monolayers are dynamically stable, while ab-initio molecular dynamics simulations, AIMD, evaluate and confirm the thermal stability of both flat and buckled B<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> monolayers. The buckling phenomenon at low temperatures has no a significant impact on the heat capacity contrary to what happens in the high temperature limit. The optical characteristics of the B<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> monolayer, including refractive index, optical conductivity, static dielectric function, and plasmon frequency, are evaluated at different levels of the buckling parameter. The static dielectric function and plasmon frequency are enhanced with the buckling due to the screening of the electron–electron interactions, affecting the collective oscillations. Enhanced screening gives rise higher plasmon frequencies. Tuning the buckling parameter illustrates the significance of buckling as an alternative mechanism for adjusting the performance of B<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115744"},"PeriodicalIF":2.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Fadil , Chaitany Jayprakash Raorane , Hussein Sabbah , A. Samih , R. El Fdil , Mohammad Altaf , Yedluri Anil Kumar , Seong Cheol Kim , E. Salmani
{"title":"Magnetic response of square Husimi bilayer nanolattice: Monte Carlo simulations","authors":"Z. Fadil , Chaitany Jayprakash Raorane , Hussein Sabbah , A. Samih , R. El Fdil , Mohammad Altaf , Yedluri Anil Kumar , Seong Cheol Kim , E. Salmani","doi":"10.1016/j.ssc.2024.115748","DOIUrl":"10.1016/j.ssc.2024.115748","url":null,"abstract":"<div><div>Monte Carlo simulations of the square Husimi bilayer nanolattice reveal that both blocking temperature (<em>t</em><sub><em>B</em></sub>) and coercive field (ℎ<sub><em>C</em></sub>) were influenced by different physical parameters. These insights are crucial for optimizing magnetic devices and managing thermal effects. The study provides valuable guidance for the design of more efficient and stable magnetic systems. Bilayer magnetic ferrimagnetic nanosystems show diverse applications in nanotechnology, leveraging their magnetic properties for significant advancements across various technological fields.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115748"},"PeriodicalIF":2.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivan G. Orletskyi, Ivan P. Koziarskyi, Maya V. Koval, Maria I. Ilashchuk, Eduard V. Maistruk, Dmytro P. Koziarskyi
{"title":"Features of current flow in the n-CoFe2O4/n-CdTe heterojunction","authors":"Ivan G. Orletskyi, Ivan P. Koziarskyi, Maya V. Koval, Maria I. Ilashchuk, Eduard V. Maistruk, Dmytro P. Koziarskyi","doi":"10.1016/j.ssc.2024.115749","DOIUrl":"10.1016/j.ssc.2024.115749","url":null,"abstract":"<div><div><em>n</em>-CoFe<sub>2</sub>O<sub>4</sub>/<em>n</em>-CdTe heterojunctions with a current rectification ratio of 3·10<sup>5</sup> at voltages |<em>V</em>| = 1.5 V were made by spray pyrolysis of aqueous solutions of cobalt and iron salts on <em>n</em>-CdTe substrates. Based on the analysis of the temperature dependence of <em>I-V</em>-characteristics in the forward voltage range, a change in the mechanisms of current flow in <em>n</em>-CoFe<sub>2</sub>O<sub>4</sub>/<em>n</em>-CdTe heterojunctions was established from overbarrier at voltages of 3kT<em>/q</em> < <em>V</em> < 0.3 V to tunneling at voltages of 0.4 V < <em>V</em> < 1 V. The role of surface states in the formation of the energy profile of the heterojunction and the participation of energy levels in the band gap of <em>n</em>-CdTe in the formation of the tunnel current have been clarified. The reasons for the occurrence of negative differential resistance at the forward biases of the structure have been clarified. The current at reverse biases in the range −3 V < <em>V</em> < -3kT<em>/q</em> was analyzed. According to the analysis of the <em>C-V</em>-characteristics, an inversion layer was found in the heterojunction and its behavior from voltage was explained.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115749"},"PeriodicalIF":2.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fengnan Yang, Shulei Zhao, Buyang Ma, Yan Liang, Shuotong Zong, Yan Zhang, Yafei Kuang, Wenfeng Liu, Fenghua Chen
{"title":"Elastocaloric effect and magnetic properties of rare earth Ce-doped Cu-Al-Mn alloy","authors":"Fengnan Yang, Shulei Zhao, Buyang Ma, Yan Liang, Shuotong Zong, Yan Zhang, Yafei Kuang, Wenfeng Liu, Fenghua Chen","doi":"10.1016/j.ssc.2024.115745","DOIUrl":"10.1016/j.ssc.2024.115745","url":null,"abstract":"<div><div>In this research, the elastocaloric and magnetic properties of Cu<sub>70</sub>Al<sub>20.5</sub>Mn<sub>9.5-<em>x</em></sub>Ce<sub><em>x</em></sub> (<em>x</em> = 0, 0.3, 0.6, 0.9) alloy are systematically studied. The resistance-temperature curve (R-T) revealed that the phase transition temperature range of the alloy is below room temperature (about 230–272 K) and increases as the Ce content increases. In addition, the thermomagnetic curve (M-T) and isothermal magnetization curve (M − H) suggested that the alloy exhibits weak magnetism. The X-ray diffraction pattern shows that the alloy is a single β phase at room temperature. The stress-strain curve shows that with the increase of Ce content, the overall strain of the alloy tends to decrease, indicating that the addition of Ce will increase the compressive modulus of the alloy. The test of elastocaloric properties shows that the maximum adiabatic temperature change of the alloy initially decreases and then increases as the Ce content rises. When the Ce content is 0.3, it exhibits an adiabatic temperature change of 7.4 K under the stress unloading of 500 MPa. The temperature-time cycle test shows that Cu<sub>70</sub>Al<sub>20.5</sub>Mn<sub>9.2</sub>Ce<sub>0.3</sub> has good elastocaloric cycle stability.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115745"},"PeriodicalIF":2.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Pineda-Medina, Herbert Vinck-Posada, William J. Herrera
{"title":"Electric transport and topological properties of binary heterostructures in topological insulators","authors":"R. Pineda-Medina, Herbert Vinck-Posada, William J. Herrera","doi":"10.1016/j.ssc.2024.115729","DOIUrl":"10.1016/j.ssc.2024.115729","url":null,"abstract":"<div><div>The design of devices with coupled hybrid structures offers an approach to creating synthetic topological materials. This work discusses the topological and transport properties of low-dimensional binary heterostructures of topological and trivial materials. By adjusting the parameters of each component, we control the global topological properties to enhance tunneling and optimize the transmission of the topological edge states (TES). Considering a one-dimensional tight-binding model, we build heterostructures of coupled chains employing Green’s functions (GF) formalism. We determine the topological characteristics of chains and couple them together, applying Dyson’s equation to generate the heterostructure. The intensity and decay length of the TES vary depending on the coupling parameters and the size of each chain. We investigate the topological diagrams phase using the energy bands of the periodic system and calculating the invariant from the Zak phase. Using cross-band condition, we derive analytical functions of the parameter space to get the phase topological diagram, which can be compared with the LDOS maps at zero energy. Finally, we calculate the differential conductance with the Keldysh GF technique to demonstrate the tunneling of the TES at the zero bias voltage and discuss potential design and experimental applications.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115729"},"PeriodicalIF":2.1,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pd6C32: A pentagonal icositetrahedron molecule","authors":"Ling-Yan Ai , Hui-Yan Zhao , Ying Liu , Su-Ye Yu","doi":"10.1016/j.ssc.2024.115730","DOIUrl":"10.1016/j.ssc.2024.115730","url":null,"abstract":"<div><div>A stable pentagonal icositetrahedron Pd<sub>6</sub>C<sub>32</sub> with O symmetry has been predicted using ab initio calculations. Stabilities and electronic properties of the Pd<sub>6</sub>C<sub>32</sub> cage were determined. The calculated vibrational frequencies of Pd<sub>6</sub>C<sub>32</sub> range from 81.6 cm<sup>−1</sup> to 1386.7 cm<sup>−1</sup>, with no imaginary frequency components, indicating its dynamic stability. When the molecular dynamics simulation temperature reaches 1300 K, the Pd<sub>6</sub>C<sub>32</sub> molecule can maintain the initial topological structure. The comprehensive examination of the natural bond orbital (NBO) indicates that the C-Pd bond can be characterized as a σ bond formed by two-center two-electron (2c-2e), while the Pd atoms exhibit characteristics associated with d orbitals. The hollow cavity within Pd<sub>6</sub>C<sub>32</sub> can serve as a suitable host for accommodating various atoms or molecules, thereby highlighting the advantages of investigating embedded fullerenes.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115730"},"PeriodicalIF":2.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}