Rachid Oualaid , Youssef El bid , Najib El Biaze , Rachid Markazi , Khadija El-moudenib , Mohamed Bouzelmad , Abdeljabar Aboulkassim
{"title":"用DFT研究储氢用镁基双钙钛矿Mg2XH6 (X= V, Cr)的力学、光学、电学和结构性能","authors":"Rachid Oualaid , Youssef El bid , Najib El Biaze , Rachid Markazi , Khadija El-moudenib , Mohamed Bouzelmad , Abdeljabar Aboulkassim","doi":"10.1016/j.ssc.2025.116102","DOIUrl":null,"url":null,"abstract":"<div><div>A first-principles study was conducted to explore advanced hydrogen storage materials by systematically investigating the mechanical, electronic, optical, and thermodynamic properties of <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>X</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> (X = V, Cr). These latters are investigated using the CASTEP software in which the calculus are based on the approximations GGA-PBE and HSE06 hybrid functional. Both hydrides exhibit thermodynamic, mechanical and dynamic stability, as confirmed by their negative formation enthalpies, Born mechanical stability criteria, phonon dispersion curves, and thermodynamic properties analysis. Our first-principles calculations reveal that <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>V</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> has a larger lattice constant (6.75 Å) compared to <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mtext>Cr</mtext><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> (6.60 Å). Electronic structure analysis reveals a zero-band gap, indicating metallic behavior. Optical properties analysis reveals that both hydrides exhibit a strong response in the ultraviolet region. Furthermore, both compounds exhibit high hydrogen storage capacities, with gravimetric capacities (<span><math><mrow><msub><mi>C</mi><mtext>wt</mtext></msub><mo>%</mo></mrow></math></span>) of 5.73 wt% for <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>V</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> and 5.67 wt% for <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mtext>Cr</mtext><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span>. The formation enthalpies are (<span><math><mrow><msub><mrow><mo>Δ</mo><mi>H</mi></mrow><mi>f</mi></msub></mrow></math></span> = −2.48 eV/atom) for <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>V</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> and (<span><math><mrow><msub><mrow><mo>Δ</mo><mi>H</mi></mrow><mi>f</mi></msub><mo>=</mo></mrow></math></span>-2.40 eV/atom) for <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mtext>Cr</mtext><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span>. According to thermodynamic analysis, <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mtext>Cr</mtext><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> has a lower desorption temperature (590.51 K) than <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>V</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> (610.25 K).</div><div>In our study of the double perovskite hydride of <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>X</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> (X = V, Cr), we show that these latters are promising candidates for hydrogen storage and fuel cell applications, due to their favorable hydrogen storage capacity, excellent stability and also their appropriate electronic and optical properties.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"404 ","pages":"Article 116102"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of mechanical, optical, electrical and structural properties of magnesium-based double perovskites Mg2XH6 (X= V, Cr) for hydrogen storage applications using DFT\",\"authors\":\"Rachid Oualaid , Youssef El bid , Najib El Biaze , Rachid Markazi , Khadija El-moudenib , Mohamed Bouzelmad , Abdeljabar Aboulkassim\",\"doi\":\"10.1016/j.ssc.2025.116102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A first-principles study was conducted to explore advanced hydrogen storage materials by systematically investigating the mechanical, electronic, optical, and thermodynamic properties of <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>X</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> (X = V, Cr). These latters are investigated using the CASTEP software in which the calculus are based on the approximations GGA-PBE and HSE06 hybrid functional. Both hydrides exhibit thermodynamic, mechanical and dynamic stability, as confirmed by their negative formation enthalpies, Born mechanical stability criteria, phonon dispersion curves, and thermodynamic properties analysis. Our first-principles calculations reveal that <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>V</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> has a larger lattice constant (6.75 Å) compared to <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mtext>Cr</mtext><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> (6.60 Å). Electronic structure analysis reveals a zero-band gap, indicating metallic behavior. Optical properties analysis reveals that both hydrides exhibit a strong response in the ultraviolet region. Furthermore, both compounds exhibit high hydrogen storage capacities, with gravimetric capacities (<span><math><mrow><msub><mi>C</mi><mtext>wt</mtext></msub><mo>%</mo></mrow></math></span>) of 5.73 wt% for <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>V</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> and 5.67 wt% for <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mtext>Cr</mtext><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span>. The formation enthalpies are (<span><math><mrow><msub><mrow><mo>Δ</mo><mi>H</mi></mrow><mi>f</mi></msub></mrow></math></span> = −2.48 eV/atom) for <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>V</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> and (<span><math><mrow><msub><mrow><mo>Δ</mo><mi>H</mi></mrow><mi>f</mi></msub><mo>=</mo></mrow></math></span>-2.40 eV/atom) for <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mtext>Cr</mtext><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span>. According to thermodynamic analysis, <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mtext>Cr</mtext><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> has a lower desorption temperature (590.51 K) than <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>V</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> (610.25 K).</div><div>In our study of the double perovskite hydride of <span><math><mrow><msub><mtext>Mg</mtext><mn>2</mn></msub><mi>X</mi><msub><mi>H</mi><mn>6</mn></msub></mrow></math></span> (X = V, Cr), we show that these latters are promising candidates for hydrogen storage and fuel cell applications, due to their favorable hydrogen storage capacity, excellent stability and also their appropriate electronic and optical properties.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"404 \",\"pages\":\"Article 116102\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109825002777\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825002777","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Study of mechanical, optical, electrical and structural properties of magnesium-based double perovskites Mg2XH6 (X= V, Cr) for hydrogen storage applications using DFT
A first-principles study was conducted to explore advanced hydrogen storage materials by systematically investigating the mechanical, electronic, optical, and thermodynamic properties of (X = V, Cr). These latters are investigated using the CASTEP software in which the calculus are based on the approximations GGA-PBE and HSE06 hybrid functional. Both hydrides exhibit thermodynamic, mechanical and dynamic stability, as confirmed by their negative formation enthalpies, Born mechanical stability criteria, phonon dispersion curves, and thermodynamic properties analysis. Our first-principles calculations reveal that has a larger lattice constant (6.75 Å) compared to (6.60 Å). Electronic structure analysis reveals a zero-band gap, indicating metallic behavior. Optical properties analysis reveals that both hydrides exhibit a strong response in the ultraviolet region. Furthermore, both compounds exhibit high hydrogen storage capacities, with gravimetric capacities () of 5.73 wt% for and 5.67 wt% for . The formation enthalpies are ( = −2.48 eV/atom) for and (-2.40 eV/atom) for . According to thermodynamic analysis, has a lower desorption temperature (590.51 K) than (610.25 K).
In our study of the double perovskite hydride of (X = V, Cr), we show that these latters are promising candidates for hydrogen storage and fuel cell applications, due to their favorable hydrogen storage capacity, excellent stability and also their appropriate electronic and optical properties.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.