{"title":"Bi2Sr2CaCu2O8+δ的压力依赖演化:高压超导应用的DFT见解","authors":"Abhay P. Srivastava, Brijesh K. Pandey","doi":"10.1016/j.ssc.2025.116112","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employ Density functional theory to explore how pressure affects various characteristics of Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+</sub>δ (BSCCO-2212) from 0 to 30 GPa. The equilibrium volume and bulk modulus we calculated matched observed data quite closely, which lends credence to the accuracy of our methods. As pressure increased, we observed a consistent decrease in volume, suggesting the material's lattice is remarkably resilient. The mechanical properties, including elastic constants and moduli, improved with increasing pressure and maintained stability based on the Born criteria. Interestingly, elastic anisotropy decreased somewhat, pointing towards a trend of more uniform mechanical behavior. Moreover, thermodynamic assessments showed lattice hardening, as indicated by an increasing Debye temperature, a decreasing Grüneisen parameter, and suppressed thermal expansion. Dynamical stability was confirmed through phonon dispersion calculations, which revealed no imaginary frequencies across the Brillouin zone. The agreement between theoretical and experimental results highlights DFT's ability to predict the behavior of high-Tc cuprates under these conditions. It is plausible that the adjustable properties of BSCCO-2212 could make it useful in high-field magnets, cryogenic electronics, and perhaps even other demanding superconducting contexts.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"404 ","pages":"Article 116112"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure-dependent evolution of Bi2Sr2CaCu2O8+δ: DFT insights for high-pressure superconducting applications\",\"authors\":\"Abhay P. Srivastava, Brijesh K. Pandey\",\"doi\":\"10.1016/j.ssc.2025.116112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we employ Density functional theory to explore how pressure affects various characteristics of Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+</sub>δ (BSCCO-2212) from 0 to 30 GPa. The equilibrium volume and bulk modulus we calculated matched observed data quite closely, which lends credence to the accuracy of our methods. As pressure increased, we observed a consistent decrease in volume, suggesting the material's lattice is remarkably resilient. The mechanical properties, including elastic constants and moduli, improved with increasing pressure and maintained stability based on the Born criteria. Interestingly, elastic anisotropy decreased somewhat, pointing towards a trend of more uniform mechanical behavior. Moreover, thermodynamic assessments showed lattice hardening, as indicated by an increasing Debye temperature, a decreasing Grüneisen parameter, and suppressed thermal expansion. Dynamical stability was confirmed through phonon dispersion calculations, which revealed no imaginary frequencies across the Brillouin zone. The agreement between theoretical and experimental results highlights DFT's ability to predict the behavior of high-Tc cuprates under these conditions. It is plausible that the adjustable properties of BSCCO-2212 could make it useful in high-field magnets, cryogenic electronics, and perhaps even other demanding superconducting contexts.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"404 \",\"pages\":\"Article 116112\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003810982500287X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003810982500287X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Pressure-dependent evolution of Bi2Sr2CaCu2O8+δ: DFT insights for high-pressure superconducting applications
In this study, we employ Density functional theory to explore how pressure affects various characteristics of Bi2Sr2CaCu2O8+δ (BSCCO-2212) from 0 to 30 GPa. The equilibrium volume and bulk modulus we calculated matched observed data quite closely, which lends credence to the accuracy of our methods. As pressure increased, we observed a consistent decrease in volume, suggesting the material's lattice is remarkably resilient. The mechanical properties, including elastic constants and moduli, improved with increasing pressure and maintained stability based on the Born criteria. Interestingly, elastic anisotropy decreased somewhat, pointing towards a trend of more uniform mechanical behavior. Moreover, thermodynamic assessments showed lattice hardening, as indicated by an increasing Debye temperature, a decreasing Grüneisen parameter, and suppressed thermal expansion. Dynamical stability was confirmed through phonon dispersion calculations, which revealed no imaginary frequencies across the Brillouin zone. The agreement between theoretical and experimental results highlights DFT's ability to predict the behavior of high-Tc cuprates under these conditions. It is plausible that the adjustable properties of BSCCO-2212 could make it useful in high-field magnets, cryogenic electronics, and perhaps even other demanding superconducting contexts.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.