Annales Mathematiques du Quebec最新文献

筛选
英文 中文
On the group of (omega ^{k})-preserving diffeomorphisms 关于保留微分同胚的$$omega^{k}$$群
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-08-02 DOI: 10.1007/s40316-023-00220-5
Habib Alizadeh
{"title":"On the group of (omega ^{k})-preserving diffeomorphisms","authors":"Habib Alizadeh","doi":"10.1007/s40316-023-00220-5","DOIUrl":"10.1007/s40316-023-00220-5","url":null,"abstract":"<div><p>We show that if a diffeomorphism of a symplectic manifold <span>((M^{2n},omega ))</span> preserves the form <span>(omega ^{k})</span> for <span>(0&lt; k &lt; n)</span> and is connected to identity through such diffeomorphisms then it is indeed a symplectomorphism.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"477 - 487"},"PeriodicalIF":0.5,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45225625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A formal model of Coleman families and applications to Iwasawa invariants Coleman族的形式模型及其在Iwasawa不变量中的应用
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-07-06 DOI: 10.1007/s40316-023-00217-0
Filippo Alberto Edoardo Nuccio Mortarino Majno di Capriglio, Tadashi Ochiai, Jishnu Ray
{"title":"A formal model of Coleman families and applications to Iwasawa invariants","authors":"Filippo Alberto Edoardo Nuccio Mortarino Majno di Capriglio,&nbsp;Tadashi Ochiai,&nbsp;Jishnu Ray","doi":"10.1007/s40316-023-00217-0","DOIUrl":"10.1007/s40316-023-00217-0","url":null,"abstract":"<div><p>For a given Coleman family of modular forms, we construct a formal model and prove the existence of a family of Galois representations associated to the Coleman family. As an application, we study the variations of Iwasawa <span>(lambda )</span>- and <span>(mu )</span>-invariants of dual fine (strict) Selmer groups over the cyclotomic <span>(mathbb {Z}_p)</span>-extension of <span>(mathbb {Q})</span> in Coleman families of modular forms. This generalizes an earlier work of Jha and Sujatha for Hida families.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"453 - 475"},"PeriodicalIF":0.5,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43356566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
La matrice de logarithme en termes de chiffres p-adiques 以 p-adic 数表示的对数矩阵
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-06-21 DOI: 10.1007/s40316-023-00215-2
Florian Sprung
{"title":"La matrice de logarithme en termes de chiffres p-adiques","authors":"Florian Sprung","doi":"10.1007/s40316-023-00215-2","DOIUrl":"10.1007/s40316-023-00215-2","url":null,"abstract":"<div><p>We give a new description of the logarithm matrix of a modular form in terms of distributions, generalizing the work of Dion and Lei for the case <span>(a_p=0)</span>. What allows us to include the case <span>(a_pne 0)</span> is a new definition, that of a distribution matrix, and the characterization of this matrix by <i>p</i>-adic digits. One can apply these methods to the corresponding case of distributions in multiple variables.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"519 - 529"},"PeriodicalIF":0.5,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136355876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal bounds for Neumann eigenvalues in terms of the diameter 以直径表示的诺伊曼特征值的最优界
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-06-10 DOI: 10.1007/s40316-023-00218-z
Antoine Henrot, Marco Michetti
{"title":"Optimal bounds for Neumann eigenvalues in terms of the diameter","authors":"Antoine Henrot,&nbsp;Marco Michetti","doi":"10.1007/s40316-023-00218-z","DOIUrl":"10.1007/s40316-023-00218-z","url":null,"abstract":"<div><p>In this paper, we obtain optimal upper bounds for all the Neumann eigenvalues in two situations (that are closely related). First we consider a one-dimensional Sturm–Liouville eigenvalue problem where the density is a function <i>h</i>(<i>x</i>) whose some power is concave. We prove existence of a maximizer for <span>(mu _k(h))</span> and we completely characterize it. Then we consider the Neumann eigenvalues (for the Laplacian) of a domain <span>(Omega subset {mathbb {R}}^d)</span> of given diameter and we assume that its profile function (defined as the <span>(d-1)</span> dimensional measure of the slices orthogonal to a diameter) has also some power that is concave. This includes the case of convex domains in <span>({mathbb {R}}^d)</span>, containing and generalizing previous results by P. Kröger. On the other hand, in the last section, we give examples of domains for which the upper bound fails to be true, showing that, in general, <span>(sup D^2(Omega )mu _k(Omega )= +infty )</span>.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"277 - 308"},"PeriodicalIF":0.5,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41645422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher codimension Iwasawa theory for elliptic curves with supersingular reduction 超奇异约化椭圆曲线的高协维Iwasawa理论
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-05-15 DOI: 10.1007/s40316-023-00216-1
Takenori Kataoka
{"title":"Higher codimension Iwasawa theory for elliptic curves with supersingular reduction","authors":"Takenori Kataoka","doi":"10.1007/s40316-023-00216-1","DOIUrl":"10.1007/s40316-023-00216-1","url":null,"abstract":"<p>Bleher et al. began studying higher codimension Iwasawa theory for classical Iwasawa modules. Subsequently, Lei and Palvannan studied an analogue for elliptic curves with supersingular reduction. In this paper, we obtain a vast generalization of the work of Lei and Palvannan. A key technique is an approach to the work of Bleher et al. that the author previously proposed. For this purpose, we also study the structure of ±-norm subgroups and duality properties of multiply-signed Selmer groups.</p>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"379 - 406"},"PeriodicalIF":0.5,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47415821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ramification of p-power torsion points of formal groups 形式群的p-幂扭点的分支
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-05-11 DOI: 10.1007/s40316-023-00214-3
Adrian Iovita, Jackson S. Morrow, Alexandru Zaharescu
{"title":"Ramification of p-power torsion points of formal groups","authors":"Adrian Iovita,&nbsp;Jackson S. Morrow,&nbsp;Alexandru Zaharescu","doi":"10.1007/s40316-023-00214-3","DOIUrl":"10.1007/s40316-023-00214-3","url":null,"abstract":"<div><p>Let <i>p</i> be a rational prime, let <i>F</i> denote a finite, unramified extension of <span>(mathbb {Q}_p)</span>, let <i>K</i> be the completion of the maximal unramified extension of <span>(mathbb {Q}_p)</span>, and let <span>(overline{K})</span> be some fixed algebraic closure of <i>K</i>. Let <i>A</i> be an abelian variety defined over <i>F</i>, with good reduction, let <span>(mathcal {A})</span> denote the Néron model of <i>A</i> over <span>(textrm{Spec}(mathcal {O}_F))</span>, and let <span>(widehat{mathcal {A}})</span> be the formal completion of <span>(mathcal {A})</span> along the identity of its special fiber, i.e. the formal group of <i>A</i>. In this work, we prove two results concerning the ramification of <i>p</i>-power torsion points on <span>(widehat{mathcal {A}})</span>. One of our main results describes conditions on <span>(widehat{mathcal {A}})</span>, base changed to <span>(text {Spf}(mathcal {O}_K) )</span>, for which the field <span>(K(widehat{mathcal {A}}[p])/K)</span> i s a tamely ramified extension where <span>(widehat{mathcal {A}}[p])</span> denotes the group of <i>p</i>-torsion points of <span>(widehat{mathcal {A}})</span> over <span>(mathcal {O}_{overline{K}})</span>. This result generalizes previous work when <i>A</i> is 1-dimensional and work of Arias-de-Reyna when <i>A</i> is the Jacobian of certain genus 2 hyperelliptic curves.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"361 - 378"},"PeriodicalIF":0.5,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42565048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A p-adic interpolation of generalized Heegner cycles and integral Perrin-Riou twist I 广义Heegner环和积分Perrin-Riou扭转的p进插值
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-03-02 DOI: 10.1007/s40316-023-00213-4
Shinichi Kobayashi
{"title":"A p-adic interpolation of generalized Heegner cycles and integral Perrin-Riou twist I","authors":"Shinichi Kobayashi","doi":"10.1007/s40316-023-00213-4","DOIUrl":"10.1007/s40316-023-00213-4","url":null,"abstract":"<div><p>In this paper, we develop an integral refinement of the Perrin-Riou theory of exponential maps. We also formulate the Perrin-Riou theory for anticyclotomic deformation of modular forms in terms of the theory of the Serre–Tate local moduli and interpolate generalized Heegner cycles <i>p</i>-adically.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"47 1","pages":"73 - 116"},"PeriodicalIF":0.5,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46718623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On the classification of (({mathfrak {g}},K))-modules generated by nearly holomorphic Hilbert–Siegel modular forms and projection operators 近全纯Hilbert-Siegel模形式与投影算子生成的$$({mathfrak {g}},K)$$ (g, K) -模的分类
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-02-16 DOI: 10.1007/s40316-023-00211-6
Shuji Horinaga
{"title":"On the classification of (({mathfrak {g}},K))-modules generated by nearly holomorphic Hilbert–Siegel modular forms and projection operators","authors":"Shuji Horinaga","doi":"10.1007/s40316-023-00211-6","DOIUrl":"10.1007/s40316-023-00211-6","url":null,"abstract":"<div><p>We classify the <span>(({mathfrak {g}},K))</span>-modules generated by nearly holomorphic Hilbert–Siegel modular forms by the global method. As an application, we study the image of projection operators on the space of nearly holomorphic Hilbert–Siegel modular forms with respect to infinitesimal characters in terms of <span>(({mathfrak {g}},K))</span>-modules.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"309 - 348"},"PeriodicalIF":0.5,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43198161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing Galois representations with large Iwasawa (lambda )-invariant 构造具有大Iwasawa λ不变量的伽罗瓦表示$$lambda $$
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-01-28 DOI: 10.1007/s40316-023-00212-5
Anwesh Ray
{"title":"Constructing Galois representations with large Iwasawa (lambda )-invariant","authors":"Anwesh Ray","doi":"10.1007/s40316-023-00212-5","DOIUrl":"10.1007/s40316-023-00212-5","url":null,"abstract":"<div><p>Let <span>(pge 5)</span> be a prime. We construct modular Galois representations for which the <span>(mathbb {Z}_p)</span>-corank of the <i>p</i>-primary Selmer group (i.e., its <span>(lambda )</span>-invariant) over the cyclotomic <span>(mathbb {Z}_p)</span>-extension is large. More precisely, for any natural number <i>n</i>, one constructs a modular Galois representation such that the associated <span>(lambda )</span>-invariant is <span>(ge n)</span>. The method is based on the study of congruences between modular forms, and leverages results of Greenberg and Vatsal. Given a modular form <span>(f_1)</span> satisfying suitable conditions, one constructs a congruent modular form <span>(f_2)</span> for which the <span>(lambda )</span>-invariant of the Selmer group is large. A key ingredient in acheiving this is the Galois theoretic lifting result of Fakhruddin–Khare–Patrikis, which extends previous work of Ramakrishna. The results are illustrated by explicit examples.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 1","pages":"253 - 268"},"PeriodicalIF":0.5,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48369166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional equations for supersingular abelian varieties over ({textbf{Z}}_p^2)-extensions $${textbf{Z}}_p^2$$Zp2-扩展上的超奇异阿贝尔变种的函数方程
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2023-01-13 DOI: 10.1007/s40316-022-00210-z
Cédric Dion
{"title":"Functional equations for supersingular abelian varieties over ({textbf{Z}}_p^2)-extensions","authors":"Cédric Dion","doi":"10.1007/s40316-022-00210-z","DOIUrl":"10.1007/s40316-022-00210-z","url":null,"abstract":"<div><p>Let <i>K</i> be an imaginary quadratic field and <span>(K_infty )</span> be the <span>({textbf{Z}}_p^2)</span>-extension of <i>K</i>. Answering a question of Ahmed and Lim, we show that the Pontryagin dual of the Selmer group over <span>(K_infty )</span> associated to a supersingular polarized abelian variety admits an algebraic functional equation. The proof uses the theory of <span>(Gamma )</span>-system developed by Lai, Longhi, Tan and Trihan. We also show the algebraic functional equation holds for Sprung’s chromatic Selmer groups of supersingular elliptic curves along <span>(K_infty )</span>.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 1","pages":"221 - 251"},"PeriodicalIF":0.5,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47351986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信