{"title":"以直径表示的诺伊曼特征值的最优界","authors":"Antoine Henrot, Marco Michetti","doi":"10.1007/s40316-023-00218-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we obtain optimal upper bounds for all the Neumann eigenvalues in two situations (that are closely related). First we consider a one-dimensional Sturm–Liouville eigenvalue problem where the density is a function <i>h</i>(<i>x</i>) whose some power is concave. We prove existence of a maximizer for <span>\\(\\mu _k(h)\\)</span> and we completely characterize it. Then we consider the Neumann eigenvalues (for the Laplacian) of a domain <span>\\(\\Omega \\subset {\\mathbb {R}}^d\\)</span> of given diameter and we assume that its profile function (defined as the <span>\\(d-1\\)</span> dimensional measure of the slices orthogonal to a diameter) has also some power that is concave. This includes the case of convex domains in <span>\\({\\mathbb {R}}^d\\)</span>, containing and generalizing previous results by P. Kröger. On the other hand, in the last section, we give examples of domains for which the upper bound fails to be true, showing that, in general, <span>\\(\\sup D^2(\\Omega )\\mu _k(\\Omega )= +\\infty \\)</span>.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"277 - 308"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal bounds for Neumann eigenvalues in terms of the diameter\",\"authors\":\"Antoine Henrot, Marco Michetti\",\"doi\":\"10.1007/s40316-023-00218-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we obtain optimal upper bounds for all the Neumann eigenvalues in two situations (that are closely related). First we consider a one-dimensional Sturm–Liouville eigenvalue problem where the density is a function <i>h</i>(<i>x</i>) whose some power is concave. We prove existence of a maximizer for <span>\\\\(\\\\mu _k(h)\\\\)</span> and we completely characterize it. Then we consider the Neumann eigenvalues (for the Laplacian) of a domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^d\\\\)</span> of given diameter and we assume that its profile function (defined as the <span>\\\\(d-1\\\\)</span> dimensional measure of the slices orthogonal to a diameter) has also some power that is concave. This includes the case of convex domains in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span>, containing and generalizing previous results by P. Kröger. On the other hand, in the last section, we give examples of domains for which the upper bound fails to be true, showing that, in general, <span>\\\\(\\\\sup D^2(\\\\Omega )\\\\mu _k(\\\\Omega )= +\\\\infty \\\\)</span>.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"48 2\",\"pages\":\"277 - 308\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-023-00218-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-023-00218-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimal bounds for Neumann eigenvalues in terms of the diameter
In this paper, we obtain optimal upper bounds for all the Neumann eigenvalues in two situations (that are closely related). First we consider a one-dimensional Sturm–Liouville eigenvalue problem where the density is a function h(x) whose some power is concave. We prove existence of a maximizer for \(\mu _k(h)\) and we completely characterize it. Then we consider the Neumann eigenvalues (for the Laplacian) of a domain \(\Omega \subset {\mathbb {R}}^d\) of given diameter and we assume that its profile function (defined as the \(d-1\) dimensional measure of the slices orthogonal to a diameter) has also some power that is concave. This includes the case of convex domains in \({\mathbb {R}}^d\), containing and generalizing previous results by P. Kröger. On the other hand, in the last section, we give examples of domains for which the upper bound fails to be true, showing that, in general, \(\sup D^2(\Omega )\mu _k(\Omega )= +\infty \).
期刊介绍:
The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science.
Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages.
History:
The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique.
On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues.
Histoire:
La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.