以直径表示的诺伊曼特征值的最优界

IF 0.5 Q3 MATHEMATICS
Antoine Henrot, Marco Michetti
{"title":"以直径表示的诺伊曼特征值的最优界","authors":"Antoine Henrot,&nbsp;Marco Michetti","doi":"10.1007/s40316-023-00218-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we obtain optimal upper bounds for all the Neumann eigenvalues in two situations (that are closely related). First we consider a one-dimensional Sturm–Liouville eigenvalue problem where the density is a function <i>h</i>(<i>x</i>) whose some power is concave. We prove existence of a maximizer for <span>\\(\\mu _k(h)\\)</span> and we completely characterize it. Then we consider the Neumann eigenvalues (for the Laplacian) of a domain <span>\\(\\Omega \\subset {\\mathbb {R}}^d\\)</span> of given diameter and we assume that its profile function (defined as the <span>\\(d-1\\)</span> dimensional measure of the slices orthogonal to a diameter) has also some power that is concave. This includes the case of convex domains in <span>\\({\\mathbb {R}}^d\\)</span>, containing and generalizing previous results by P. Kröger. On the other hand, in the last section, we give examples of domains for which the upper bound fails to be true, showing that, in general, <span>\\(\\sup D^2(\\Omega )\\mu _k(\\Omega )= +\\infty \\)</span>.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"277 - 308"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal bounds for Neumann eigenvalues in terms of the diameter\",\"authors\":\"Antoine Henrot,&nbsp;Marco Michetti\",\"doi\":\"10.1007/s40316-023-00218-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we obtain optimal upper bounds for all the Neumann eigenvalues in two situations (that are closely related). First we consider a one-dimensional Sturm–Liouville eigenvalue problem where the density is a function <i>h</i>(<i>x</i>) whose some power is concave. We prove existence of a maximizer for <span>\\\\(\\\\mu _k(h)\\\\)</span> and we completely characterize it. Then we consider the Neumann eigenvalues (for the Laplacian) of a domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^d\\\\)</span> of given diameter and we assume that its profile function (defined as the <span>\\\\(d-1\\\\)</span> dimensional measure of the slices orthogonal to a diameter) has also some power that is concave. This includes the case of convex domains in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span>, containing and generalizing previous results by P. Kröger. On the other hand, in the last section, we give examples of domains for which the upper bound fails to be true, showing that, in general, <span>\\\\(\\\\sup D^2(\\\\Omega )\\\\mu _k(\\\\Omega )= +\\\\infty \\\\)</span>.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"48 2\",\"pages\":\"277 - 308\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-023-00218-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-023-00218-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在两种(密切相关的)情况下获得了所有诺伊曼特征值的最优上限。首先,我们考虑一个一维 Sturm-Liouville 特征值问题,其中的密度是一个函数 h(x),它的某个幂是凹的。我们证明了 \(\mu _k(h)\) 最大化的存在,并完全描述了它的特征。然后我们考虑给定直径的域\(\Omega \subset {\mathbb {R}}^d\) 的诺伊曼特征值(对于拉普拉斯),我们假设它的轮廓函数(定义为与直径正交的切片的\(d-1\) 维度量)也有一些幂是凹的。这包括了 \({\mathbb {R}}^d\) 中凸域的情况,包含并推广了 P. Kröger 以前的结果。另一方面,在最后一节中,我们举例说明了上界不成立的域,表明在一般情况下,(\sup D^2(\Omega )\mu _k(\Omega )= +\infty \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal bounds for Neumann eigenvalues in terms of the diameter

Optimal bounds for Neumann eigenvalues in terms of the diameter

In this paper, we obtain optimal upper bounds for all the Neumann eigenvalues in two situations (that are closely related). First we consider a one-dimensional Sturm–Liouville eigenvalue problem where the density is a function h(x) whose some power is concave. We prove existence of a maximizer for \(\mu _k(h)\) and we completely characterize it. Then we consider the Neumann eigenvalues (for the Laplacian) of a domain \(\Omega \subset {\mathbb {R}}^d\) of given diameter and we assume that its profile function (defined as the \(d-1\) dimensional measure of the slices orthogonal to a diameter) has also some power that is concave. This includes the case of convex domains in \({\mathbb {R}}^d\), containing and generalizing previous results by P. Kröger. On the other hand, in the last section, we give examples of domains for which the upper bound fails to be true, showing that, in general, \(\sup D^2(\Omega )\mu _k(\Omega )= +\infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信