构造具有大Iwasawa λ不变量的伽罗瓦表示$$\lambda $$

IF 0.5 Q3 MATHEMATICS
Anwesh Ray
{"title":"构造具有大Iwasawa λ不变量的伽罗瓦表示$$\\lambda $$","authors":"Anwesh Ray","doi":"10.1007/s40316-023-00212-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(p\\ge 5\\)</span> be a prime. We construct modular Galois representations for which the <span>\\(\\mathbb {Z}_p\\)</span>-corank of the <i>p</i>-primary Selmer group (i.e., its <span>\\(\\lambda \\)</span>-invariant) over the cyclotomic <span>\\(\\mathbb {Z}_p\\)</span>-extension is large. More precisely, for any natural number <i>n</i>, one constructs a modular Galois representation such that the associated <span>\\(\\lambda \\)</span>-invariant is <span>\\(\\ge n\\)</span>. The method is based on the study of congruences between modular forms, and leverages results of Greenberg and Vatsal. Given a modular form <span>\\(f_1\\)</span> satisfying suitable conditions, one constructs a congruent modular form <span>\\(f_2\\)</span> for which the <span>\\(\\lambda \\)</span>-invariant of the Selmer group is large. A key ingredient in acheiving this is the Galois theoretic lifting result of Fakhruddin–Khare–Patrikis, which extends previous work of Ramakrishna. The results are illustrated by explicit examples.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 1","pages":"253 - 268"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing Galois representations with large Iwasawa \\\\(\\\\lambda \\\\)-invariant\",\"authors\":\"Anwesh Ray\",\"doi\":\"10.1007/s40316-023-00212-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(p\\\\ge 5\\\\)</span> be a prime. We construct modular Galois representations for which the <span>\\\\(\\\\mathbb {Z}_p\\\\)</span>-corank of the <i>p</i>-primary Selmer group (i.e., its <span>\\\\(\\\\lambda \\\\)</span>-invariant) over the cyclotomic <span>\\\\(\\\\mathbb {Z}_p\\\\)</span>-extension is large. More precisely, for any natural number <i>n</i>, one constructs a modular Galois representation such that the associated <span>\\\\(\\\\lambda \\\\)</span>-invariant is <span>\\\\(\\\\ge n\\\\)</span>. The method is based on the study of congruences between modular forms, and leverages results of Greenberg and Vatsal. Given a modular form <span>\\\\(f_1\\\\)</span> satisfying suitable conditions, one constructs a congruent modular form <span>\\\\(f_2\\\\)</span> for which the <span>\\\\(\\\\lambda \\\\)</span>-invariant of the Selmer group is large. A key ingredient in acheiving this is the Galois theoretic lifting result of Fakhruddin–Khare–Patrikis, which extends previous work of Ramakrishna. The results are illustrated by explicit examples.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"48 1\",\"pages\":\"253 - 268\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-023-00212-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-023-00212-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(p\ge 5\) 是一个素数。我们构造了这样的模数伽罗瓦表示,即在循环\(\mathbb {Z}_p\)扩展上的p-主塞尔默群的\(\mathbb {Z}_p\)-corank(即它的\(\lambda \)-不变式)是很大的。更确切地说,对于任意自然数n,我们可以构造一个模数伽罗瓦表示,使得相关的(\lambda \)-不变量是(\ge n\ )。这种方法基于对模态之间全等关系的研究,并利用了格林伯格和瓦特萨尔的成果。给定一个满足适当条件的模形式(f_1),我们就可以构造出一个同余模形式(f_2),对于这个同余模形式,塞尔默群的(\λ\)不变量是很大的。实现这一点的关键因素是法赫鲁丁-哈雷-帕特里基斯(Fakhruddin-Khare-Patrikis)的伽洛瓦理论提升结果,它扩展了拉马克里希纳(Ramakrishna)以前的工作。这些结果通过明确的例子加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing Galois representations with large Iwasawa \(\lambda \)-invariant

Let \(p\ge 5\) be a prime. We construct modular Galois representations for which the \(\mathbb {Z}_p\)-corank of the p-primary Selmer group (i.e., its \(\lambda \)-invariant) over the cyclotomic \(\mathbb {Z}_p\)-extension is large. More precisely, for any natural number n, one constructs a modular Galois representation such that the associated \(\lambda \)-invariant is \(\ge n\). The method is based on the study of congruences between modular forms, and leverages results of Greenberg and Vatsal. Given a modular form \(f_1\) satisfying suitable conditions, one constructs a congruent modular form \(f_2\) for which the \(\lambda \)-invariant of the Selmer group is large. A key ingredient in acheiving this is the Galois theoretic lifting result of Fakhruddin–Khare–Patrikis, which extends previous work of Ramakrishna. The results are illustrated by explicit examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信