Adrian Iovita, Jackson S. Morrow, Alexandru Zaharescu
{"title":"形式群的p-幂扭点的分支","authors":"Adrian Iovita, Jackson S. Morrow, Alexandru Zaharescu","doi":"10.1007/s40316-023-00214-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>p</i> be a rational prime, let <i>F</i> denote a finite, unramified extension of <span>\\(\\mathbb {Q}_p\\)</span>, let <i>K</i> be the completion of the maximal unramified extension of <span>\\(\\mathbb {Q}_p\\)</span>, and let <span>\\(\\overline{K}\\)</span> be some fixed algebraic closure of <i>K</i>. Let <i>A</i> be an abelian variety defined over <i>F</i>, with good reduction, let <span>\\(\\mathcal {A}\\)</span> denote the Néron model of <i>A</i> over <span>\\(\\textrm{Spec}(\\mathcal {O}_F)\\)</span>, and let <span>\\(\\widehat{\\mathcal {A}}\\)</span> be the formal completion of <span>\\(\\mathcal {A}\\)</span> along the identity of its special fiber, i.e. the formal group of <i>A</i>. In this work, we prove two results concerning the ramification of <i>p</i>-power torsion points on <span>\\(\\widehat{\\mathcal {A}}\\)</span>. One of our main results describes conditions on <span>\\(\\widehat{\\mathcal {A}}\\)</span>, base changed to <span>\\(\\text {Spf}(\\mathcal {O}_K) \\)</span>, for which the field <span>\\(K(\\widehat{\\mathcal {A}}[p])/K\\)</span> i s a tamely ramified extension where <span>\\(\\widehat{\\mathcal {A}}[p]\\)</span> denotes the group of <i>p</i>-torsion points of <span>\\(\\widehat{\\mathcal {A}}\\)</span> over <span>\\(\\mathcal {O}_{\\overline{K}}\\)</span>. This result generalizes previous work when <i>A</i> is 1-dimensional and work of Arias-de-Reyna when <i>A</i> is the Jacobian of certain genus 2 hyperelliptic curves.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"361 - 378"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramification of p-power torsion points of formal groups\",\"authors\":\"Adrian Iovita, Jackson S. Morrow, Alexandru Zaharescu\",\"doi\":\"10.1007/s40316-023-00214-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>p</i> be a rational prime, let <i>F</i> denote a finite, unramified extension of <span>\\\\(\\\\mathbb {Q}_p\\\\)</span>, let <i>K</i> be the completion of the maximal unramified extension of <span>\\\\(\\\\mathbb {Q}_p\\\\)</span>, and let <span>\\\\(\\\\overline{K}\\\\)</span> be some fixed algebraic closure of <i>K</i>. Let <i>A</i> be an abelian variety defined over <i>F</i>, with good reduction, let <span>\\\\(\\\\mathcal {A}\\\\)</span> denote the Néron model of <i>A</i> over <span>\\\\(\\\\textrm{Spec}(\\\\mathcal {O}_F)\\\\)</span>, and let <span>\\\\(\\\\widehat{\\\\mathcal {A}}\\\\)</span> be the formal completion of <span>\\\\(\\\\mathcal {A}\\\\)</span> along the identity of its special fiber, i.e. the formal group of <i>A</i>. In this work, we prove two results concerning the ramification of <i>p</i>-power torsion points on <span>\\\\(\\\\widehat{\\\\mathcal {A}}\\\\)</span>. One of our main results describes conditions on <span>\\\\(\\\\widehat{\\\\mathcal {A}}\\\\)</span>, base changed to <span>\\\\(\\\\text {Spf}(\\\\mathcal {O}_K) \\\\)</span>, for which the field <span>\\\\(K(\\\\widehat{\\\\mathcal {A}}[p])/K\\\\)</span> i s a tamely ramified extension where <span>\\\\(\\\\widehat{\\\\mathcal {A}}[p]\\\\)</span> denotes the group of <i>p</i>-torsion points of <span>\\\\(\\\\widehat{\\\\mathcal {A}}\\\\)</span> over <span>\\\\(\\\\mathcal {O}_{\\\\overline{K}}\\\\)</span>. This result generalizes previous work when <i>A</i> is 1-dimensional and work of Arias-de-Reyna when <i>A</i> is the Jacobian of certain genus 2 hyperelliptic curves.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"48 2\",\"pages\":\"361 - 378\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-023-00214-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-023-00214-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 p 是一个有理素数,让 F 表示 \(\mathbb {Q}_p\) 的一个有限的、未精简的扩展,让 K 是 \(\mathbb {Q}_p\) 的最大未精简扩展的完成,让 \(\overline{K}\) 是 K 的某个固定代数闭包。让 A 是一个定义在 F 上的无常花序,具有良好的还原性,让 \(\mathcal {A}\) 表示 A 在 \(\textrm{Spec}(\mathcal {O}_F)\) 上的内龙模型,让 \(\widehat\mathcal {A}\) 是 \(\mathcal {A}\) 沿其特殊纤维的同一性的形式完成,即 A 的形式群。在这项工作中,我们证明了两个关于 \(\widehat\{mathcal {A}}) 上 p-power 扭转点的ramification 的结果。我们的主要结果之一描述了在\(\widehat\{mathcal {A}}\), base changed to \(\text {Spf}(\mathcal {O}_K) \)上的条件、对它来说,场 \(K(\widehat\mathcal {A}[p])/K\) 是一个驯服的分支,其中 \(\widehat\mathcal {A}[p]\) 表示 \(\widehat\mathcal {A}) 在 \(\mathcal {O}_{\overline{K}}\) 上的 p 个扭转点群。这一结果概括了之前在 A 是一维时的工作,以及 Arias-de-Reyna 在 A 是某些属 2 超椭圆曲线的雅各布时的工作。
Ramification of p-power torsion points of formal groups
Let p be a rational prime, let F denote a finite, unramified extension of \(\mathbb {Q}_p\), let K be the completion of the maximal unramified extension of \(\mathbb {Q}_p\), and let \(\overline{K}\) be some fixed algebraic closure of K. Let A be an abelian variety defined over F, with good reduction, let \(\mathcal {A}\) denote the Néron model of A over \(\textrm{Spec}(\mathcal {O}_F)\), and let \(\widehat{\mathcal {A}}\) be the formal completion of \(\mathcal {A}\) along the identity of its special fiber, i.e. the formal group of A. In this work, we prove two results concerning the ramification of p-power torsion points on \(\widehat{\mathcal {A}}\). One of our main results describes conditions on \(\widehat{\mathcal {A}}\), base changed to \(\text {Spf}(\mathcal {O}_K) \), for which the field \(K(\widehat{\mathcal {A}}[p])/K\) i s a tamely ramified extension where \(\widehat{\mathcal {A}}[p]\) denotes the group of p-torsion points of \(\widehat{\mathcal {A}}\) over \(\mathcal {O}_{\overline{K}}\). This result generalizes previous work when A is 1-dimensional and work of Arias-de-Reyna when A is the Jacobian of certain genus 2 hyperelliptic curves.
期刊介绍:
The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science.
Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages.
History:
The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique.
On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues.
Histoire:
La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.